This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The opposite category of functors is compatible with the category of opposite functors in terms of identity morphism. (Contributed by Zhi Wang, 18-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fucoppc.o | ||
| fucoppc.p | |||
| fucoppc.q | |||
| fucoppc.r | |||
| fucoppc.s | |||
| fucoppc.n | |||
| fucoppc.f | No typesetting found for |- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) with typecode |- | ||
| fucoppc.g | |||
| fucoppcid.x | |||
| Assertion | fucoppcid |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucoppc.o | ||
| 2 | fucoppc.p | ||
| 3 | fucoppc.q | ||
| 4 | fucoppc.r | ||
| 5 | fucoppc.s | ||
| 6 | fucoppc.n | ||
| 7 | fucoppc.f | Could not format ( ph -> F = ( oppFunc |` ( C Func D ) ) ) : No typesetting found for |- ( ph -> F = ( oppFunc |` ( C Func D ) ) ) with typecode |- | |
| 8 | fucoppc.g | ||
| 9 | fucoppcid.x | ||
| 10 | 9 | func1st2nd | |
| 11 | 10 | funcrcl3 | |
| 12 | eqid | ||
| 13 | 2 12 | oppcid | |
| 14 | 11 13 | syl | |
| 15 | 7 9 | opf11 | |
| 16 | 14 15 | coeq12d | |
| 17 | eqid | ||
| 18 | eqid | ||
| 19 | 1 2 | oppff1 | Could not format ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-> ( O Func P ) : No typesetting found for |- ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-> ( O Func P ) with typecode |- |
| 20 | f1f | Could not format ( ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-> ( O Func P ) -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) --> ( O Func P ) ) : No typesetting found for |- ( ( oppFunc |` ( C Func D ) ) : ( C Func D ) -1-1-> ( O Func P ) -> ( oppFunc |` ( C Func D ) ) : ( C Func D ) --> ( O Func P ) ) with typecode |- | |
| 21 | 19 20 | ax-mp | Could not format ( oppFunc |` ( C Func D ) ) : ( C Func D ) --> ( O Func P ) : No typesetting found for |- ( oppFunc |` ( C Func D ) ) : ( C Func D ) --> ( O Func P ) with typecode |- |
| 22 | 7 | feq1d | Could not format ( ph -> ( F : ( C Func D ) --> ( O Func P ) <-> ( oppFunc |` ( C Func D ) ) : ( C Func D ) --> ( O Func P ) ) ) : No typesetting found for |- ( ph -> ( F : ( C Func D ) --> ( O Func P ) <-> ( oppFunc |` ( C Func D ) ) : ( C Func D ) --> ( O Func P ) ) ) with typecode |- |
| 23 | 21 22 | mpbiri | |
| 24 | 23 9 | ffvelcdmd | |
| 25 | 5 17 18 24 | fucid | |
| 26 | 10 | funcrcl2 | |
| 27 | 3 26 11 | fuccat | |
| 28 | eqid | ||
| 29 | 4 28 | oppcid | |
| 30 | 27 29 | syl | |
| 31 | 30 | fveq1d | |
| 32 | 3 28 12 9 | fucid | |
| 33 | 31 32 | eqtrd | |
| 34 | 3 6 12 9 | fucidcl | |
| 35 | 8 9 9 33 34 | opf2 | |
| 36 | 16 25 35 | 3eqtr4rd |