This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A faithful functor reflects sections. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fthsect.b | |- B = ( Base ` C ) |
|
| fthsect.h | |- H = ( Hom ` C ) |
||
| fthsect.f | |- ( ph -> F ( C Faith D ) G ) |
||
| fthsect.x | |- ( ph -> X e. B ) |
||
| fthsect.y | |- ( ph -> Y e. B ) |
||
| fthsect.m | |- ( ph -> M e. ( X H Y ) ) |
||
| fthsect.n | |- ( ph -> N e. ( Y H X ) ) |
||
| fthsect.s | |- S = ( Sect ` C ) |
||
| fthsect.t | |- T = ( Sect ` D ) |
||
| Assertion | fthsect | |- ( ph -> ( M ( X S Y ) N <-> ( ( X G Y ) ` M ) ( ( F ` X ) T ( F ` Y ) ) ( ( Y G X ) ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fthsect.b | |- B = ( Base ` C ) |
|
| 2 | fthsect.h | |- H = ( Hom ` C ) |
|
| 3 | fthsect.f | |- ( ph -> F ( C Faith D ) G ) |
|
| 4 | fthsect.x | |- ( ph -> X e. B ) |
|
| 5 | fthsect.y | |- ( ph -> Y e. B ) |
|
| 6 | fthsect.m | |- ( ph -> M e. ( X H Y ) ) |
|
| 7 | fthsect.n | |- ( ph -> N e. ( Y H X ) ) |
|
| 8 | fthsect.s | |- S = ( Sect ` C ) |
|
| 9 | fthsect.t | |- T = ( Sect ` D ) |
|
| 10 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 11 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 12 | fthfunc | |- ( C Faith D ) C_ ( C Func D ) |
|
| 13 | 12 | ssbri | |- ( F ( C Faith D ) G -> F ( C Func D ) G ) |
| 14 | 3 13 | syl | |- ( ph -> F ( C Func D ) G ) |
| 15 | df-br | |- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
|
| 16 | 14 15 | sylib | |- ( ph -> <. F , G >. e. ( C Func D ) ) |
| 17 | funcrcl | |- ( <. F , G >. e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
|
| 18 | 16 17 | syl | |- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
| 19 | 18 | simpld | |- ( ph -> C e. Cat ) |
| 20 | 1 2 11 19 4 5 4 6 7 | catcocl | |- ( ph -> ( N ( <. X , Y >. ( comp ` C ) X ) M ) e. ( X H X ) ) |
| 21 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 22 | 1 2 21 19 4 | catidcl | |- ( ph -> ( ( Id ` C ) ` X ) e. ( X H X ) ) |
| 23 | 1 2 10 3 4 4 20 22 | fthi | |- ( ph -> ( ( ( X G X ) ` ( N ( <. X , Y >. ( comp ` C ) X ) M ) ) = ( ( X G X ) ` ( ( Id ` C ) ` X ) ) <-> ( N ( <. X , Y >. ( comp ` C ) X ) M ) = ( ( Id ` C ) ` X ) ) ) |
| 24 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 25 | 1 2 11 24 14 4 5 4 6 7 | funcco | |- ( ph -> ( ( X G X ) ` ( N ( <. X , Y >. ( comp ` C ) X ) M ) ) = ( ( ( Y G X ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` D ) ( F ` X ) ) ( ( X G Y ) ` M ) ) ) |
| 26 | eqid | |- ( Id ` D ) = ( Id ` D ) |
|
| 27 | 1 21 26 14 4 | funcid | |- ( ph -> ( ( X G X ) ` ( ( Id ` C ) ` X ) ) = ( ( Id ` D ) ` ( F ` X ) ) ) |
| 28 | 25 27 | eqeq12d | |- ( ph -> ( ( ( X G X ) ` ( N ( <. X , Y >. ( comp ` C ) X ) M ) ) = ( ( X G X ) ` ( ( Id ` C ) ` X ) ) <-> ( ( ( Y G X ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` D ) ( F ` X ) ) ( ( X G Y ) ` M ) ) = ( ( Id ` D ) ` ( F ` X ) ) ) ) |
| 29 | 23 28 | bitr3d | |- ( ph -> ( ( N ( <. X , Y >. ( comp ` C ) X ) M ) = ( ( Id ` C ) ` X ) <-> ( ( ( Y G X ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` D ) ( F ` X ) ) ( ( X G Y ) ` M ) ) = ( ( Id ` D ) ` ( F ` X ) ) ) ) |
| 30 | 1 2 11 21 8 19 4 5 6 7 | issect2 | |- ( ph -> ( M ( X S Y ) N <-> ( N ( <. X , Y >. ( comp ` C ) X ) M ) = ( ( Id ` C ) ` X ) ) ) |
| 31 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 32 | 18 | simprd | |- ( ph -> D e. Cat ) |
| 33 | 1 31 14 | funcf1 | |- ( ph -> F : B --> ( Base ` D ) ) |
| 34 | 33 4 | ffvelcdmd | |- ( ph -> ( F ` X ) e. ( Base ` D ) ) |
| 35 | 33 5 | ffvelcdmd | |- ( ph -> ( F ` Y ) e. ( Base ` D ) ) |
| 36 | 1 2 10 14 4 5 | funcf2 | |- ( ph -> ( X G Y ) : ( X H Y ) --> ( ( F ` X ) ( Hom ` D ) ( F ` Y ) ) ) |
| 37 | 36 6 | ffvelcdmd | |- ( ph -> ( ( X G Y ) ` M ) e. ( ( F ` X ) ( Hom ` D ) ( F ` Y ) ) ) |
| 38 | 1 2 10 14 5 4 | funcf2 | |- ( ph -> ( Y G X ) : ( Y H X ) --> ( ( F ` Y ) ( Hom ` D ) ( F ` X ) ) ) |
| 39 | 38 7 | ffvelcdmd | |- ( ph -> ( ( Y G X ) ` N ) e. ( ( F ` Y ) ( Hom ` D ) ( F ` X ) ) ) |
| 40 | 31 10 24 26 9 32 34 35 37 39 | issect2 | |- ( ph -> ( ( ( X G Y ) ` M ) ( ( F ` X ) T ( F ` Y ) ) ( ( Y G X ) ` N ) <-> ( ( ( Y G X ) ` N ) ( <. ( F ` X ) , ( F ` Y ) >. ( comp ` D ) ( F ` X ) ) ( ( X G Y ) ` M ) ) = ( ( Id ` D ) ` ( F ` X ) ) ) ) |
| 41 | 29 30 40 | 3bitr4d | |- ( ph -> ( M ( X S Y ) N <-> ( ( X G Y ) ` M ) ( ( F ` X ) T ( F ` Y ) ) ( ( Y G X ) ` N ) ) ) |