This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A faithful functor reflects inverses. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fthsect.b | |- B = ( Base ` C ) |
|
| fthsect.h | |- H = ( Hom ` C ) |
||
| fthsect.f | |- ( ph -> F ( C Faith D ) G ) |
||
| fthsect.x | |- ( ph -> X e. B ) |
||
| fthsect.y | |- ( ph -> Y e. B ) |
||
| fthsect.m | |- ( ph -> M e. ( X H Y ) ) |
||
| fthsect.n | |- ( ph -> N e. ( Y H X ) ) |
||
| fthinv.s | |- I = ( Inv ` C ) |
||
| fthinv.t | |- J = ( Inv ` D ) |
||
| Assertion | fthinv | |- ( ph -> ( M ( X I Y ) N <-> ( ( X G Y ) ` M ) ( ( F ` X ) J ( F ` Y ) ) ( ( Y G X ) ` N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fthsect.b | |- B = ( Base ` C ) |
|
| 2 | fthsect.h | |- H = ( Hom ` C ) |
|
| 3 | fthsect.f | |- ( ph -> F ( C Faith D ) G ) |
|
| 4 | fthsect.x | |- ( ph -> X e. B ) |
|
| 5 | fthsect.y | |- ( ph -> Y e. B ) |
|
| 6 | fthsect.m | |- ( ph -> M e. ( X H Y ) ) |
|
| 7 | fthsect.n | |- ( ph -> N e. ( Y H X ) ) |
|
| 8 | fthinv.s | |- I = ( Inv ` C ) |
|
| 9 | fthinv.t | |- J = ( Inv ` D ) |
|
| 10 | eqid | |- ( Sect ` C ) = ( Sect ` C ) |
|
| 11 | eqid | |- ( Sect ` D ) = ( Sect ` D ) |
|
| 12 | 1 2 3 4 5 6 7 10 11 | fthsect | |- ( ph -> ( M ( X ( Sect ` C ) Y ) N <-> ( ( X G Y ) ` M ) ( ( F ` X ) ( Sect ` D ) ( F ` Y ) ) ( ( Y G X ) ` N ) ) ) |
| 13 | 1 2 3 5 4 7 6 10 11 | fthsect | |- ( ph -> ( N ( Y ( Sect ` C ) X ) M <-> ( ( Y G X ) ` N ) ( ( F ` Y ) ( Sect ` D ) ( F ` X ) ) ( ( X G Y ) ` M ) ) ) |
| 14 | 12 13 | anbi12d | |- ( ph -> ( ( M ( X ( Sect ` C ) Y ) N /\ N ( Y ( Sect ` C ) X ) M ) <-> ( ( ( X G Y ) ` M ) ( ( F ` X ) ( Sect ` D ) ( F ` Y ) ) ( ( Y G X ) ` N ) /\ ( ( Y G X ) ` N ) ( ( F ` Y ) ( Sect ` D ) ( F ` X ) ) ( ( X G Y ) ` M ) ) ) ) |
| 15 | fthfunc | |- ( C Faith D ) C_ ( C Func D ) |
|
| 16 | 15 | ssbri | |- ( F ( C Faith D ) G -> F ( C Func D ) G ) |
| 17 | 3 16 | syl | |- ( ph -> F ( C Func D ) G ) |
| 18 | df-br | |- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
|
| 19 | 17 18 | sylib | |- ( ph -> <. F , G >. e. ( C Func D ) ) |
| 20 | funcrcl | |- ( <. F , G >. e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
|
| 21 | 19 20 | syl | |- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
| 22 | 21 | simpld | |- ( ph -> C e. Cat ) |
| 23 | 1 8 22 4 5 10 | isinv | |- ( ph -> ( M ( X I Y ) N <-> ( M ( X ( Sect ` C ) Y ) N /\ N ( Y ( Sect ` C ) X ) M ) ) ) |
| 24 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 25 | 21 | simprd | |- ( ph -> D e. Cat ) |
| 26 | 1 24 17 | funcf1 | |- ( ph -> F : B --> ( Base ` D ) ) |
| 27 | 26 4 | ffvelcdmd | |- ( ph -> ( F ` X ) e. ( Base ` D ) ) |
| 28 | 26 5 | ffvelcdmd | |- ( ph -> ( F ` Y ) e. ( Base ` D ) ) |
| 29 | 24 9 25 27 28 11 | isinv | |- ( ph -> ( ( ( X G Y ) ` M ) ( ( F ` X ) J ( F ` Y ) ) ( ( Y G X ) ` N ) <-> ( ( ( X G Y ) ` M ) ( ( F ` X ) ( Sect ` D ) ( F ` Y ) ) ( ( Y G X ) ` N ) /\ ( ( Y G X ) ` N ) ( ( F ` Y ) ( Sect ` D ) ( F ` X ) ) ( ( X G Y ) ` M ) ) ) ) |
| 30 | 14 23 29 | 3bitr4d | |- ( ph -> ( M ( X I Y ) N <-> ( ( X G Y ) ` M ) ( ( F ` X ) J ( F ` Y ) ) ( ( Y G X ) ` N ) ) ) |