This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A faithful functor reflects epimorphisms. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fthmon.b | |- B = ( Base ` C ) |
|
| fthmon.h | |- H = ( Hom ` C ) |
||
| fthmon.f | |- ( ph -> F ( C Faith D ) G ) |
||
| fthmon.x | |- ( ph -> X e. B ) |
||
| fthmon.y | |- ( ph -> Y e. B ) |
||
| fthmon.r | |- ( ph -> R e. ( X H Y ) ) |
||
| fthepi.e | |- E = ( Epi ` C ) |
||
| fthepi.p | |- P = ( Epi ` D ) |
||
| fthepi.1 | |- ( ph -> ( ( X G Y ) ` R ) e. ( ( F ` X ) P ( F ` Y ) ) ) |
||
| Assertion | fthepi | |- ( ph -> R e. ( X E Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fthmon.b | |- B = ( Base ` C ) |
|
| 2 | fthmon.h | |- H = ( Hom ` C ) |
|
| 3 | fthmon.f | |- ( ph -> F ( C Faith D ) G ) |
|
| 4 | fthmon.x | |- ( ph -> X e. B ) |
|
| 5 | fthmon.y | |- ( ph -> Y e. B ) |
|
| 6 | fthmon.r | |- ( ph -> R e. ( X H Y ) ) |
|
| 7 | fthepi.e | |- E = ( Epi ` C ) |
|
| 8 | fthepi.p | |- P = ( Epi ` D ) |
|
| 9 | fthepi.1 | |- ( ph -> ( ( X G Y ) ` R ) e. ( ( F ` X ) P ( F ` Y ) ) ) |
|
| 10 | eqid | |- ( oppCat ` C ) = ( oppCat ` C ) |
|
| 11 | 10 1 | oppcbas | |- B = ( Base ` ( oppCat ` C ) ) |
| 12 | eqid | |- ( Hom ` ( oppCat ` C ) ) = ( Hom ` ( oppCat ` C ) ) |
|
| 13 | eqid | |- ( oppCat ` D ) = ( oppCat ` D ) |
|
| 14 | 10 13 3 | fthoppc | |- ( ph -> F ( ( oppCat ` C ) Faith ( oppCat ` D ) ) tpos G ) |
| 15 | 2 10 | oppchom | |- ( Y ( Hom ` ( oppCat ` C ) ) X ) = ( X H Y ) |
| 16 | 6 15 | eleqtrrdi | |- ( ph -> R e. ( Y ( Hom ` ( oppCat ` C ) ) X ) ) |
| 17 | eqid | |- ( Mono ` ( oppCat ` C ) ) = ( Mono ` ( oppCat ` C ) ) |
|
| 18 | eqid | |- ( Mono ` ( oppCat ` D ) ) = ( Mono ` ( oppCat ` D ) ) |
|
| 19 | ovtpos | |- ( Y tpos G X ) = ( X G Y ) |
|
| 20 | 19 | fveq1i | |- ( ( Y tpos G X ) ` R ) = ( ( X G Y ) ` R ) |
| 21 | 20 9 | eqeltrid | |- ( ph -> ( ( Y tpos G X ) ` R ) e. ( ( F ` X ) P ( F ` Y ) ) ) |
| 22 | fthfunc | |- ( C Faith D ) C_ ( C Func D ) |
|
| 23 | 22 | ssbri | |- ( F ( C Faith D ) G -> F ( C Func D ) G ) |
| 24 | 3 23 | syl | |- ( ph -> F ( C Func D ) G ) |
| 25 | df-br | |- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
|
| 26 | 24 25 | sylib | |- ( ph -> <. F , G >. e. ( C Func D ) ) |
| 27 | funcrcl | |- ( <. F , G >. e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
|
| 28 | 26 27 | syl | |- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
| 29 | 28 | simprd | |- ( ph -> D e. Cat ) |
| 30 | 13 29 18 8 | oppcmon | |- ( ph -> ( ( F ` Y ) ( Mono ` ( oppCat ` D ) ) ( F ` X ) ) = ( ( F ` X ) P ( F ` Y ) ) ) |
| 31 | 21 30 | eleqtrrd | |- ( ph -> ( ( Y tpos G X ) ` R ) e. ( ( F ` Y ) ( Mono ` ( oppCat ` D ) ) ( F ` X ) ) ) |
| 32 | 11 12 14 5 4 16 17 18 31 | fthmon | |- ( ph -> R e. ( Y ( Mono ` ( oppCat ` C ) ) X ) ) |
| 33 | 28 | simpld | |- ( ph -> C e. Cat ) |
| 34 | 10 33 17 7 | oppcmon | |- ( ph -> ( Y ( Mono ` ( oppCat ` C ) ) X ) = ( X E Y ) ) |
| 35 | 32 34 | eleqtrd | |- ( ph -> R e. ( X E Y ) ) |