This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A faithful functor reflects monomorphisms. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fthmon.b | |- B = ( Base ` C ) |
|
| fthmon.h | |- H = ( Hom ` C ) |
||
| fthmon.f | |- ( ph -> F ( C Faith D ) G ) |
||
| fthmon.x | |- ( ph -> X e. B ) |
||
| fthmon.y | |- ( ph -> Y e. B ) |
||
| fthmon.r | |- ( ph -> R e. ( X H Y ) ) |
||
| fthmon.m | |- M = ( Mono ` C ) |
||
| fthmon.n | |- N = ( Mono ` D ) |
||
| fthmon.1 | |- ( ph -> ( ( X G Y ) ` R ) e. ( ( F ` X ) N ( F ` Y ) ) ) |
||
| Assertion | fthmon | |- ( ph -> R e. ( X M Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fthmon.b | |- B = ( Base ` C ) |
|
| 2 | fthmon.h | |- H = ( Hom ` C ) |
|
| 3 | fthmon.f | |- ( ph -> F ( C Faith D ) G ) |
|
| 4 | fthmon.x | |- ( ph -> X e. B ) |
|
| 5 | fthmon.y | |- ( ph -> Y e. B ) |
|
| 6 | fthmon.r | |- ( ph -> R e. ( X H Y ) ) |
|
| 7 | fthmon.m | |- M = ( Mono ` C ) |
|
| 8 | fthmon.n | |- N = ( Mono ` D ) |
|
| 9 | fthmon.1 | |- ( ph -> ( ( X G Y ) ` R ) e. ( ( F ` X ) N ( F ` Y ) ) ) |
|
| 10 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 11 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 12 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 13 | fthfunc | |- ( C Faith D ) C_ ( C Func D ) |
|
| 14 | 13 | ssbri | |- ( F ( C Faith D ) G -> F ( C Func D ) G ) |
| 15 | 3 14 | syl | |- ( ph -> F ( C Func D ) G ) |
| 16 | df-br | |- ( F ( C Func D ) G <-> <. F , G >. e. ( C Func D ) ) |
|
| 17 | 15 16 | sylib | |- ( ph -> <. F , G >. e. ( C Func D ) ) |
| 18 | funcrcl | |- ( <. F , G >. e. ( C Func D ) -> ( C e. Cat /\ D e. Cat ) ) |
|
| 19 | 17 18 | syl | |- ( ph -> ( C e. Cat /\ D e. Cat ) ) |
| 20 | 19 | simprd | |- ( ph -> D e. Cat ) |
| 21 | 20 | adantr | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> D e. Cat ) |
| 22 | 15 | adantr | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> F ( C Func D ) G ) |
| 23 | 1 10 22 | funcf1 | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> F : B --> ( Base ` D ) ) |
| 24 | 4 | adantr | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> X e. B ) |
| 25 | 23 24 | ffvelcdmd | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> ( F ` X ) e. ( Base ` D ) ) |
| 26 | 5 | adantr | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> Y e. B ) |
| 27 | 23 26 | ffvelcdmd | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> ( F ` Y ) e. ( Base ` D ) ) |
| 28 | simpr1 | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> z e. B ) |
|
| 29 | 23 28 | ffvelcdmd | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> ( F ` z ) e. ( Base ` D ) ) |
| 30 | 9 | adantr | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> ( ( X G Y ) ` R ) e. ( ( F ` X ) N ( F ` Y ) ) ) |
| 31 | 1 2 11 22 28 24 | funcf2 | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> ( z G X ) : ( z H X ) --> ( ( F ` z ) ( Hom ` D ) ( F ` X ) ) ) |
| 32 | simpr2 | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> f e. ( z H X ) ) |
|
| 33 | 31 32 | ffvelcdmd | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> ( ( z G X ) ` f ) e. ( ( F ` z ) ( Hom ` D ) ( F ` X ) ) ) |
| 34 | simpr3 | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> g e. ( z H X ) ) |
|
| 35 | 31 34 | ffvelcdmd | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> ( ( z G X ) ` g ) e. ( ( F ` z ) ( Hom ` D ) ( F ` X ) ) ) |
| 36 | 10 11 12 8 21 25 27 29 30 33 35 | moni | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> ( ( ( ( X G Y ) ` R ) ( <. ( F ` z ) , ( F ` X ) >. ( comp ` D ) ( F ` Y ) ) ( ( z G X ) ` f ) ) = ( ( ( X G Y ) ` R ) ( <. ( F ` z ) , ( F ` X ) >. ( comp ` D ) ( F ` Y ) ) ( ( z G X ) ` g ) ) <-> ( ( z G X ) ` f ) = ( ( z G X ) ` g ) ) ) |
| 37 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 38 | 6 | adantr | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> R e. ( X H Y ) ) |
| 39 | 1 2 37 12 22 28 24 26 32 38 | funcco | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> ( ( z G Y ) ` ( R ( <. z , X >. ( comp ` C ) Y ) f ) ) = ( ( ( X G Y ) ` R ) ( <. ( F ` z ) , ( F ` X ) >. ( comp ` D ) ( F ` Y ) ) ( ( z G X ) ` f ) ) ) |
| 40 | 1 2 37 12 22 28 24 26 34 38 | funcco | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> ( ( z G Y ) ` ( R ( <. z , X >. ( comp ` C ) Y ) g ) ) = ( ( ( X G Y ) ` R ) ( <. ( F ` z ) , ( F ` X ) >. ( comp ` D ) ( F ` Y ) ) ( ( z G X ) ` g ) ) ) |
| 41 | 39 40 | eqeq12d | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> ( ( ( z G Y ) ` ( R ( <. z , X >. ( comp ` C ) Y ) f ) ) = ( ( z G Y ) ` ( R ( <. z , X >. ( comp ` C ) Y ) g ) ) <-> ( ( ( X G Y ) ` R ) ( <. ( F ` z ) , ( F ` X ) >. ( comp ` D ) ( F ` Y ) ) ( ( z G X ) ` f ) ) = ( ( ( X G Y ) ` R ) ( <. ( F ` z ) , ( F ` X ) >. ( comp ` D ) ( F ` Y ) ) ( ( z G X ) ` g ) ) ) ) |
| 42 | 3 | adantr | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> F ( C Faith D ) G ) |
| 43 | 19 | simpld | |- ( ph -> C e. Cat ) |
| 44 | 43 | adantr | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> C e. Cat ) |
| 45 | 1 2 37 44 28 24 26 32 38 | catcocl | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> ( R ( <. z , X >. ( comp ` C ) Y ) f ) e. ( z H Y ) ) |
| 46 | 1 2 37 44 28 24 26 34 38 | catcocl | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> ( R ( <. z , X >. ( comp ` C ) Y ) g ) e. ( z H Y ) ) |
| 47 | 1 2 11 42 28 26 45 46 | fthi | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> ( ( ( z G Y ) ` ( R ( <. z , X >. ( comp ` C ) Y ) f ) ) = ( ( z G Y ) ` ( R ( <. z , X >. ( comp ` C ) Y ) g ) ) <-> ( R ( <. z , X >. ( comp ` C ) Y ) f ) = ( R ( <. z , X >. ( comp ` C ) Y ) g ) ) ) |
| 48 | 41 47 | bitr3d | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> ( ( ( ( X G Y ) ` R ) ( <. ( F ` z ) , ( F ` X ) >. ( comp ` D ) ( F ` Y ) ) ( ( z G X ) ` f ) ) = ( ( ( X G Y ) ` R ) ( <. ( F ` z ) , ( F ` X ) >. ( comp ` D ) ( F ` Y ) ) ( ( z G X ) ` g ) ) <-> ( R ( <. z , X >. ( comp ` C ) Y ) f ) = ( R ( <. z , X >. ( comp ` C ) Y ) g ) ) ) |
| 49 | 1 2 11 42 28 24 32 34 | fthi | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> ( ( ( z G X ) ` f ) = ( ( z G X ) ` g ) <-> f = g ) ) |
| 50 | 36 48 49 | 3bitr3d | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> ( ( R ( <. z , X >. ( comp ` C ) Y ) f ) = ( R ( <. z , X >. ( comp ` C ) Y ) g ) <-> f = g ) ) |
| 51 | 50 | biimpd | |- ( ( ph /\ ( z e. B /\ f e. ( z H X ) /\ g e. ( z H X ) ) ) -> ( ( R ( <. z , X >. ( comp ` C ) Y ) f ) = ( R ( <. z , X >. ( comp ` C ) Y ) g ) -> f = g ) ) |
| 52 | 51 | ralrimivvva | |- ( ph -> A. z e. B A. f e. ( z H X ) A. g e. ( z H X ) ( ( R ( <. z , X >. ( comp ` C ) Y ) f ) = ( R ( <. z , X >. ( comp ` C ) Y ) g ) -> f = g ) ) |
| 53 | 1 2 37 7 43 4 5 | ismon2 | |- ( ph -> ( R e. ( X M Y ) <-> ( R e. ( X H Y ) /\ A. z e. B A. f e. ( z H X ) A. g e. ( z H X ) ( ( R ( <. z , X >. ( comp ` C ) Y ) f ) = ( R ( <. z , X >. ( comp ` C ) Y ) g ) -> f = g ) ) ) ) |
| 54 | 6 52 53 | mpbir2and | |- ( ph -> R e. ( X M Y ) ) |