This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A faithful functor reflects epimorphisms. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fthmon.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| fthmon.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| fthmon.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) | ||
| fthmon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| fthmon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| fthmon.r | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| fthepi.e | ⊢ 𝐸 = ( Epi ‘ 𝐶 ) | ||
| fthepi.p | ⊢ 𝑃 = ( Epi ‘ 𝐷 ) | ||
| fthepi.1 | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝑃 ( 𝐹 ‘ 𝑌 ) ) ) | ||
| Assertion | fthepi | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐸 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fthmon.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | fthmon.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | fthmon.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) | |
| 4 | fthmon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | fthmon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | fthmon.r | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 7 | fthepi.e | ⊢ 𝐸 = ( Epi ‘ 𝐶 ) | |
| 8 | fthepi.p | ⊢ 𝑃 = ( Epi ‘ 𝐷 ) | |
| 9 | fthepi.1 | ⊢ ( 𝜑 → ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝑃 ( 𝐹 ‘ 𝑌 ) ) ) | |
| 10 | eqid | ⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) | |
| 11 | 10 1 | oppcbas | ⊢ 𝐵 = ( Base ‘ ( oppCat ‘ 𝐶 ) ) |
| 12 | eqid | ⊢ ( Hom ‘ ( oppCat ‘ 𝐶 ) ) = ( Hom ‘ ( oppCat ‘ 𝐶 ) ) | |
| 13 | eqid | ⊢ ( oppCat ‘ 𝐷 ) = ( oppCat ‘ 𝐷 ) | |
| 14 | 10 13 3 | fthoppc | ⊢ ( 𝜑 → 𝐹 ( ( oppCat ‘ 𝐶 ) Faith ( oppCat ‘ 𝐷 ) ) tpos 𝐺 ) |
| 15 | 2 10 | oppchom | ⊢ ( 𝑌 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) = ( 𝑋 𝐻 𝑌 ) |
| 16 | 6 15 | eleqtrrdi | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑌 ( Hom ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) ) |
| 17 | eqid | ⊢ ( Mono ‘ ( oppCat ‘ 𝐶 ) ) = ( Mono ‘ ( oppCat ‘ 𝐶 ) ) | |
| 18 | eqid | ⊢ ( Mono ‘ ( oppCat ‘ 𝐷 ) ) = ( Mono ‘ ( oppCat ‘ 𝐷 ) ) | |
| 19 | ovtpos | ⊢ ( 𝑌 tpos 𝐺 𝑋 ) = ( 𝑋 𝐺 𝑌 ) | |
| 20 | 19 | fveq1i | ⊢ ( ( 𝑌 tpos 𝐺 𝑋 ) ‘ 𝑅 ) = ( ( 𝑋 𝐺 𝑌 ) ‘ 𝑅 ) |
| 21 | 20 9 | eqeltrid | ⊢ ( 𝜑 → ( ( 𝑌 tpos 𝐺 𝑋 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑋 ) 𝑃 ( 𝐹 ‘ 𝑌 ) ) ) |
| 22 | fthfunc | ⊢ ( 𝐶 Faith 𝐷 ) ⊆ ( 𝐶 Func 𝐷 ) | |
| 23 | 22 | ssbri | ⊢ ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 24 | 3 23 | syl | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 25 | df-br | ⊢ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 26 | 24 25 | sylib | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) ) |
| 27 | funcrcl | ⊢ ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) | |
| 28 | 26 27 | syl | ⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) |
| 29 | 28 | simprd | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) |
| 30 | 13 29 18 8 | oppcmon | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝑌 ) ( Mono ‘ ( oppCat ‘ 𝐷 ) ) ( 𝐹 ‘ 𝑋 ) ) = ( ( 𝐹 ‘ 𝑋 ) 𝑃 ( 𝐹 ‘ 𝑌 ) ) ) |
| 31 | 21 30 | eleqtrrd | ⊢ ( 𝜑 → ( ( 𝑌 tpos 𝐺 𝑋 ) ‘ 𝑅 ) ∈ ( ( 𝐹 ‘ 𝑌 ) ( Mono ‘ ( oppCat ‘ 𝐷 ) ) ( 𝐹 ‘ 𝑋 ) ) ) |
| 32 | 11 12 14 5 4 16 17 18 31 | fthmon | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑌 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) ) |
| 33 | 28 | simpld | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 34 | 10 33 17 7 | oppcmon | ⊢ ( 𝜑 → ( 𝑌 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑋 ) = ( 𝑋 𝐸 𝑌 ) ) |
| 35 | 32 34 | eleqtrd | ⊢ ( 𝜑 → 𝑅 ∈ ( 𝑋 𝐸 𝑌 ) ) |