This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Directed integral analogue of ftc2 . (Contributed by Mario Carneiro, 3-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ftc2ditg.x | |- ( ph -> X e. RR ) |
|
| ftc2ditg.y | |- ( ph -> Y e. RR ) |
||
| ftc2ditg.a | |- ( ph -> A e. ( X [,] Y ) ) |
||
| ftc2ditg.b | |- ( ph -> B e. ( X [,] Y ) ) |
||
| ftc2ditg.c | |- ( ph -> ( RR _D F ) e. ( ( X (,) Y ) -cn-> CC ) ) |
||
| ftc2ditg.i | |- ( ph -> ( RR _D F ) e. L^1 ) |
||
| ftc2ditg.f | |- ( ph -> F e. ( ( X [,] Y ) -cn-> CC ) ) |
||
| Assertion | ftc2ditg | |- ( ph -> S_ [ A -> B ] ( ( RR _D F ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ftc2ditg.x | |- ( ph -> X e. RR ) |
|
| 2 | ftc2ditg.y | |- ( ph -> Y e. RR ) |
|
| 3 | ftc2ditg.a | |- ( ph -> A e. ( X [,] Y ) ) |
|
| 4 | ftc2ditg.b | |- ( ph -> B e. ( X [,] Y ) ) |
|
| 5 | ftc2ditg.c | |- ( ph -> ( RR _D F ) e. ( ( X (,) Y ) -cn-> CC ) ) |
|
| 6 | ftc2ditg.i | |- ( ph -> ( RR _D F ) e. L^1 ) |
|
| 7 | ftc2ditg.f | |- ( ph -> F e. ( ( X [,] Y ) -cn-> CC ) ) |
|
| 8 | iccssre | |- ( ( X e. RR /\ Y e. RR ) -> ( X [,] Y ) C_ RR ) |
|
| 9 | 1 2 8 | syl2anc | |- ( ph -> ( X [,] Y ) C_ RR ) |
| 10 | 9 3 | sseldd | |- ( ph -> A e. RR ) |
| 11 | 9 4 | sseldd | |- ( ph -> B e. RR ) |
| 12 | 1 2 3 4 5 6 7 | ftc2ditglem | |- ( ( ph /\ A <_ B ) -> S_ [ A -> B ] ( ( RR _D F ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |
| 13 | fvexd | |- ( ( ph /\ t e. ( X (,) Y ) ) -> ( ( RR _D F ) ` t ) e. _V ) |
|
| 14 | cncff | |- ( ( RR _D F ) e. ( ( X (,) Y ) -cn-> CC ) -> ( RR _D F ) : ( X (,) Y ) --> CC ) |
|
| 15 | 5 14 | syl | |- ( ph -> ( RR _D F ) : ( X (,) Y ) --> CC ) |
| 16 | 15 | feqmptd | |- ( ph -> ( RR _D F ) = ( t e. ( X (,) Y ) |-> ( ( RR _D F ) ` t ) ) ) |
| 17 | 16 6 | eqeltrrd | |- ( ph -> ( t e. ( X (,) Y ) |-> ( ( RR _D F ) ` t ) ) e. L^1 ) |
| 18 | 1 2 4 3 13 17 | ditgswap | |- ( ph -> S_ [ A -> B ] ( ( RR _D F ) ` t ) _d t = -u S_ [ B -> A ] ( ( RR _D F ) ` t ) _d t ) |
| 19 | 18 | adantr | |- ( ( ph /\ B <_ A ) -> S_ [ A -> B ] ( ( RR _D F ) ` t ) _d t = -u S_ [ B -> A ] ( ( RR _D F ) ` t ) _d t ) |
| 20 | 1 2 4 3 5 6 7 | ftc2ditglem | |- ( ( ph /\ B <_ A ) -> S_ [ B -> A ] ( ( RR _D F ) ` t ) _d t = ( ( F ` A ) - ( F ` B ) ) ) |
| 21 | 20 | negeqd | |- ( ( ph /\ B <_ A ) -> -u S_ [ B -> A ] ( ( RR _D F ) ` t ) _d t = -u ( ( F ` A ) - ( F ` B ) ) ) |
| 22 | cncff | |- ( F e. ( ( X [,] Y ) -cn-> CC ) -> F : ( X [,] Y ) --> CC ) |
|
| 23 | 7 22 | syl | |- ( ph -> F : ( X [,] Y ) --> CC ) |
| 24 | 23 3 | ffvelcdmd | |- ( ph -> ( F ` A ) e. CC ) |
| 25 | 23 4 | ffvelcdmd | |- ( ph -> ( F ` B ) e. CC ) |
| 26 | 24 25 | negsubdi2d | |- ( ph -> -u ( ( F ` A ) - ( F ` B ) ) = ( ( F ` B ) - ( F ` A ) ) ) |
| 27 | 26 | adantr | |- ( ( ph /\ B <_ A ) -> -u ( ( F ` A ) - ( F ` B ) ) = ( ( F ` B ) - ( F ` A ) ) ) |
| 28 | 19 21 27 | 3eqtrd | |- ( ( ph /\ B <_ A ) -> S_ [ A -> B ] ( ( RR _D F ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |
| 29 | 10 11 12 28 | lecasei | |- ( ph -> S_ [ A -> B ] ( ( RR _D F ) ` t ) _d t = ( ( F ` B ) - ( F ` A ) ) ) |