This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse a directed integral. (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ditgcl.x | |- ( ph -> X e. RR ) |
|
| ditgcl.y | |- ( ph -> Y e. RR ) |
||
| ditgcl.a | |- ( ph -> A e. ( X [,] Y ) ) |
||
| ditgcl.b | |- ( ph -> B e. ( X [,] Y ) ) |
||
| ditgcl.c | |- ( ( ph /\ x e. ( X (,) Y ) ) -> C e. V ) |
||
| ditgcl.i | |- ( ph -> ( x e. ( X (,) Y ) |-> C ) e. L^1 ) |
||
| Assertion | ditgswap | |- ( ph -> S_ [ B -> A ] C _d x = -u S_ [ A -> B ] C _d x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ditgcl.x | |- ( ph -> X e. RR ) |
|
| 2 | ditgcl.y | |- ( ph -> Y e. RR ) |
|
| 3 | ditgcl.a | |- ( ph -> A e. ( X [,] Y ) ) |
|
| 4 | ditgcl.b | |- ( ph -> B e. ( X [,] Y ) ) |
|
| 5 | ditgcl.c | |- ( ( ph /\ x e. ( X (,) Y ) ) -> C e. V ) |
|
| 6 | ditgcl.i | |- ( ph -> ( x e. ( X (,) Y ) |-> C ) e. L^1 ) |
|
| 7 | elicc2 | |- ( ( X e. RR /\ Y e. RR ) -> ( A e. ( X [,] Y ) <-> ( A e. RR /\ X <_ A /\ A <_ Y ) ) ) |
|
| 8 | 1 2 7 | syl2anc | |- ( ph -> ( A e. ( X [,] Y ) <-> ( A e. RR /\ X <_ A /\ A <_ Y ) ) ) |
| 9 | 3 8 | mpbid | |- ( ph -> ( A e. RR /\ X <_ A /\ A <_ Y ) ) |
| 10 | 9 | simp1d | |- ( ph -> A e. RR ) |
| 11 | elicc2 | |- ( ( X e. RR /\ Y e. RR ) -> ( B e. ( X [,] Y ) <-> ( B e. RR /\ X <_ B /\ B <_ Y ) ) ) |
|
| 12 | 1 2 11 | syl2anc | |- ( ph -> ( B e. ( X [,] Y ) <-> ( B e. RR /\ X <_ B /\ B <_ Y ) ) ) |
| 13 | 4 12 | mpbid | |- ( ph -> ( B e. RR /\ X <_ B /\ B <_ Y ) ) |
| 14 | 13 | simp1d | |- ( ph -> B e. RR ) |
| 15 | simpr | |- ( ( ph /\ A <_ B ) -> A <_ B ) |
|
| 16 | 10 | adantr | |- ( ( ph /\ A <_ B ) -> A e. RR ) |
| 17 | 14 | adantr | |- ( ( ph /\ A <_ B ) -> B e. RR ) |
| 18 | 15 16 17 | ditgneg | |- ( ( ph /\ A <_ B ) -> S_ [ B -> A ] C _d x = -u S. ( A (,) B ) C _d x ) |
| 19 | 15 | ditgpos | |- ( ( ph /\ A <_ B ) -> S_ [ A -> B ] C _d x = S. ( A (,) B ) C _d x ) |
| 20 | 19 | negeqd | |- ( ( ph /\ A <_ B ) -> -u S_ [ A -> B ] C _d x = -u S. ( A (,) B ) C _d x ) |
| 21 | 18 20 | eqtr4d | |- ( ( ph /\ A <_ B ) -> S_ [ B -> A ] C _d x = -u S_ [ A -> B ] C _d x ) |
| 22 | 1 | rexrd | |- ( ph -> X e. RR* ) |
| 23 | 13 | simp2d | |- ( ph -> X <_ B ) |
| 24 | iooss1 | |- ( ( X e. RR* /\ X <_ B ) -> ( B (,) A ) C_ ( X (,) A ) ) |
|
| 25 | 22 23 24 | syl2anc | |- ( ph -> ( B (,) A ) C_ ( X (,) A ) ) |
| 26 | 2 | rexrd | |- ( ph -> Y e. RR* ) |
| 27 | 9 | simp3d | |- ( ph -> A <_ Y ) |
| 28 | iooss2 | |- ( ( Y e. RR* /\ A <_ Y ) -> ( X (,) A ) C_ ( X (,) Y ) ) |
|
| 29 | 26 27 28 | syl2anc | |- ( ph -> ( X (,) A ) C_ ( X (,) Y ) ) |
| 30 | 25 29 | sstrd | |- ( ph -> ( B (,) A ) C_ ( X (,) Y ) ) |
| 31 | 30 | sselda | |- ( ( ph /\ x e. ( B (,) A ) ) -> x e. ( X (,) Y ) ) |
| 32 | iblmbf | |- ( ( x e. ( X (,) Y ) |-> C ) e. L^1 -> ( x e. ( X (,) Y ) |-> C ) e. MblFn ) |
|
| 33 | 6 32 | syl | |- ( ph -> ( x e. ( X (,) Y ) |-> C ) e. MblFn ) |
| 34 | 33 5 | mbfmptcl | |- ( ( ph /\ x e. ( X (,) Y ) ) -> C e. CC ) |
| 35 | 31 34 | syldan | |- ( ( ph /\ x e. ( B (,) A ) ) -> C e. CC ) |
| 36 | ioombl | |- ( B (,) A ) e. dom vol |
|
| 37 | 36 | a1i | |- ( ph -> ( B (,) A ) e. dom vol ) |
| 38 | 30 37 5 6 | iblss | |- ( ph -> ( x e. ( B (,) A ) |-> C ) e. L^1 ) |
| 39 | 35 38 | itgcl | |- ( ph -> S. ( B (,) A ) C _d x e. CC ) |
| 40 | 39 | adantr | |- ( ( ph /\ B <_ A ) -> S. ( B (,) A ) C _d x e. CC ) |
| 41 | 40 | negnegd | |- ( ( ph /\ B <_ A ) -> -u -u S. ( B (,) A ) C _d x = S. ( B (,) A ) C _d x ) |
| 42 | simpr | |- ( ( ph /\ B <_ A ) -> B <_ A ) |
|
| 43 | 14 | adantr | |- ( ( ph /\ B <_ A ) -> B e. RR ) |
| 44 | 10 | adantr | |- ( ( ph /\ B <_ A ) -> A e. RR ) |
| 45 | 42 43 44 | ditgneg | |- ( ( ph /\ B <_ A ) -> S_ [ A -> B ] C _d x = -u S. ( B (,) A ) C _d x ) |
| 46 | 45 | negeqd | |- ( ( ph /\ B <_ A ) -> -u S_ [ A -> B ] C _d x = -u -u S. ( B (,) A ) C _d x ) |
| 47 | 42 | ditgpos | |- ( ( ph /\ B <_ A ) -> S_ [ B -> A ] C _d x = S. ( B (,) A ) C _d x ) |
| 48 | 41 46 47 | 3eqtr4rd | |- ( ( ph /\ B <_ A ) -> S_ [ B -> A ] C _d x = -u S_ [ A -> B ] C _d x ) |
| 49 | 10 14 21 48 | lecasei | |- ( ph -> S_ [ B -> A ] C _d x = -u S_ [ A -> B ] C _d x ) |