This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumsplit1.kph | |- F/ k ph |
|
| fsumsplit1.kd | |- F/_ k D |
||
| fsumsplit1.a | |- ( ph -> A e. Fin ) |
||
| fsumsplit1.b | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| fsumsplit1.c | |- ( ph -> C e. A ) |
||
| fsumsplit1.bd | |- ( k = C -> B = D ) |
||
| Assertion | fsumsplit1 | |- ( ph -> sum_ k e. A B = ( D + sum_ k e. ( A \ { C } ) B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumsplit1.kph | |- F/ k ph |
|
| 2 | fsumsplit1.kd | |- F/_ k D |
|
| 3 | fsumsplit1.a | |- ( ph -> A e. Fin ) |
|
| 4 | fsumsplit1.b | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 5 | fsumsplit1.c | |- ( ph -> C e. A ) |
|
| 6 | fsumsplit1.bd | |- ( k = C -> B = D ) |
|
| 7 | uncom | |- ( ( A \ { C } ) u. { C } ) = ( { C } u. ( A \ { C } ) ) |
|
| 8 | 7 | a1i | |- ( ph -> ( ( A \ { C } ) u. { C } ) = ( { C } u. ( A \ { C } ) ) ) |
| 9 | 5 | snssd | |- ( ph -> { C } C_ A ) |
| 10 | undif | |- ( { C } C_ A <-> ( { C } u. ( A \ { C } ) ) = A ) |
|
| 11 | 9 10 | sylib | |- ( ph -> ( { C } u. ( A \ { C } ) ) = A ) |
| 12 | eqidd | |- ( ph -> A = A ) |
|
| 13 | 8 11 12 | 3eqtrrd | |- ( ph -> A = ( ( A \ { C } ) u. { C } ) ) |
| 14 | 13 | sumeq1d | |- ( ph -> sum_ k e. A B = sum_ k e. ( ( A \ { C } ) u. { C } ) B ) |
| 15 | diffi | |- ( A e. Fin -> ( A \ { C } ) e. Fin ) |
|
| 16 | 3 15 | syl | |- ( ph -> ( A \ { C } ) e. Fin ) |
| 17 | neldifsnd | |- ( ph -> -. C e. ( A \ { C } ) ) |
|
| 18 | simpl | |- ( ( ph /\ k e. ( A \ { C } ) ) -> ph ) |
|
| 19 | eldifi | |- ( k e. ( A \ { C } ) -> k e. A ) |
|
| 20 | 19 | adantl | |- ( ( ph /\ k e. ( A \ { C } ) ) -> k e. A ) |
| 21 | 18 20 4 | syl2anc | |- ( ( ph /\ k e. ( A \ { C } ) ) -> B e. CC ) |
| 22 | 2 | a1i | |- ( ph -> F/_ k D ) |
| 23 | simpr | |- ( ( ph /\ k = C ) -> k = C ) |
|
| 24 | 23 6 | syl | |- ( ( ph /\ k = C ) -> B = D ) |
| 25 | 1 22 5 24 | csbiedf | |- ( ph -> [_ C / k ]_ B = D ) |
| 26 | 25 | eqcomd | |- ( ph -> D = [_ C / k ]_ B ) |
| 27 | 5 | ancli | |- ( ph -> ( ph /\ C e. A ) ) |
| 28 | nfcv | |- F/_ k C |
|
| 29 | nfv | |- F/ k C e. A |
|
| 30 | 1 29 | nfan | |- F/ k ( ph /\ C e. A ) |
| 31 | 28 | nfcsb1 | |- F/_ k [_ C / k ]_ B |
| 32 | nfcv | |- F/_ k CC |
|
| 33 | 31 32 | nfel | |- F/ k [_ C / k ]_ B e. CC |
| 34 | 30 33 | nfim | |- F/ k ( ( ph /\ C e. A ) -> [_ C / k ]_ B e. CC ) |
| 35 | eleq1 | |- ( k = C -> ( k e. A <-> C e. A ) ) |
|
| 36 | 35 | anbi2d | |- ( k = C -> ( ( ph /\ k e. A ) <-> ( ph /\ C e. A ) ) ) |
| 37 | csbeq1a | |- ( k = C -> B = [_ C / k ]_ B ) |
|
| 38 | 37 | eleq1d | |- ( k = C -> ( B e. CC <-> [_ C / k ]_ B e. CC ) ) |
| 39 | 36 38 | imbi12d | |- ( k = C -> ( ( ( ph /\ k e. A ) -> B e. CC ) <-> ( ( ph /\ C e. A ) -> [_ C / k ]_ B e. CC ) ) ) |
| 40 | 28 34 39 4 | vtoclgf | |- ( C e. A -> ( ( ph /\ C e. A ) -> [_ C / k ]_ B e. CC ) ) |
| 41 | 5 27 40 | sylc | |- ( ph -> [_ C / k ]_ B e. CC ) |
| 42 | 26 41 | eqeltrd | |- ( ph -> D e. CC ) |
| 43 | 1 2 16 5 17 21 6 42 | fsumsplitsn | |- ( ph -> sum_ k e. ( ( A \ { C } ) u. { C } ) B = ( sum_ k e. ( A \ { C } ) B + D ) ) |
| 44 | 1 16 21 | fsumclf | |- ( ph -> sum_ k e. ( A \ { C } ) B e. CC ) |
| 45 | 44 42 | addcomd | |- ( ph -> ( sum_ k e. ( A \ { C } ) B + D ) = ( D + sum_ k e. ( A \ { C } ) B ) ) |
| 46 | 14 43 45 | 3eqtrd | |- ( ph -> sum_ k e. A B = ( D + sum_ k e. ( A \ { C } ) B ) ) |