This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a sum into two parts. A version of fsumsplit using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumsplitf.ph | |- F/ k ph |
|
| fsumsplitf.ab | |- ( ph -> ( A i^i B ) = (/) ) |
||
| fsumsplitf.u | |- ( ph -> U = ( A u. B ) ) |
||
| fsumsplitf.fi | |- ( ph -> U e. Fin ) |
||
| fsumsplitf.c | |- ( ( ph /\ k e. U ) -> C e. CC ) |
||
| Assertion | fsumsplitf | |- ( ph -> sum_ k e. U C = ( sum_ k e. A C + sum_ k e. B C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumsplitf.ph | |- F/ k ph |
|
| 2 | fsumsplitf.ab | |- ( ph -> ( A i^i B ) = (/) ) |
|
| 3 | fsumsplitf.u | |- ( ph -> U = ( A u. B ) ) |
|
| 4 | fsumsplitf.fi | |- ( ph -> U e. Fin ) |
|
| 5 | fsumsplitf.c | |- ( ( ph /\ k e. U ) -> C e. CC ) |
|
| 6 | csbeq1a | |- ( k = j -> C = [_ j / k ]_ C ) |
|
| 7 | nfcv | |- F/_ j C |
|
| 8 | nfcsb1v | |- F/_ k [_ j / k ]_ C |
|
| 9 | 6 7 8 | cbvsum | |- sum_ k e. U C = sum_ j e. U [_ j / k ]_ C |
| 10 | 9 | a1i | |- ( ph -> sum_ k e. U C = sum_ j e. U [_ j / k ]_ C ) |
| 11 | nfv | |- F/ k j e. U |
|
| 12 | 1 11 | nfan | |- F/ k ( ph /\ j e. U ) |
| 13 | 8 | nfel1 | |- F/ k [_ j / k ]_ C e. CC |
| 14 | 12 13 | nfim | |- F/ k ( ( ph /\ j e. U ) -> [_ j / k ]_ C e. CC ) |
| 15 | eleq1w | |- ( k = j -> ( k e. U <-> j e. U ) ) |
|
| 16 | 15 | anbi2d | |- ( k = j -> ( ( ph /\ k e. U ) <-> ( ph /\ j e. U ) ) ) |
| 17 | 6 | eleq1d | |- ( k = j -> ( C e. CC <-> [_ j / k ]_ C e. CC ) ) |
| 18 | 16 17 | imbi12d | |- ( k = j -> ( ( ( ph /\ k e. U ) -> C e. CC ) <-> ( ( ph /\ j e. U ) -> [_ j / k ]_ C e. CC ) ) ) |
| 19 | 14 18 5 | chvarfv | |- ( ( ph /\ j e. U ) -> [_ j / k ]_ C e. CC ) |
| 20 | 2 3 4 19 | fsumsplit | |- ( ph -> sum_ j e. U [_ j / k ]_ C = ( sum_ j e. A [_ j / k ]_ C + sum_ j e. B [_ j / k ]_ C ) ) |
| 21 | csbeq1a | |- ( j = k -> [_ j / k ]_ C = [_ k / j ]_ [_ j / k ]_ C ) |
|
| 22 | csbcow | |- [_ k / j ]_ [_ j / k ]_ C = [_ k / k ]_ C |
|
| 23 | csbid | |- [_ k / k ]_ C = C |
|
| 24 | 22 23 | eqtri | |- [_ k / j ]_ [_ j / k ]_ C = C |
| 25 | 21 24 | eqtrdi | |- ( j = k -> [_ j / k ]_ C = C ) |
| 26 | 25 8 7 | cbvsum | |- sum_ j e. A [_ j / k ]_ C = sum_ k e. A C |
| 27 | 25 8 7 | cbvsum | |- sum_ j e. B [_ j / k ]_ C = sum_ k e. B C |
| 28 | 26 27 | oveq12i | |- ( sum_ j e. A [_ j / k ]_ C + sum_ j e. B [_ j / k ]_ C ) = ( sum_ k e. A C + sum_ k e. B C ) |
| 29 | 28 | a1i | |- ( ph -> ( sum_ j e. A [_ j / k ]_ C + sum_ j e. B [_ j / k ]_ C ) = ( sum_ k e. A C + sum_ k e. B C ) ) |
| 30 | 10 20 29 | 3eqtrd | |- ( ph -> sum_ k e. U C = ( sum_ k e. A C + sum_ k e. B C ) ) |