This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum of a singleton is the term. A version of sumsn using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sumsnf.1 | |- F/_ k B |
|
| sumsnf.2 | |- ( k = M -> A = B ) |
||
| Assertion | sumsnf | |- ( ( M e. V /\ B e. CC ) -> sum_ k e. { M } A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumsnf.1 | |- F/_ k B |
|
| 2 | sumsnf.2 | |- ( k = M -> A = B ) |
|
| 3 | csbeq1a | |- ( k = m -> A = [_ m / k ]_ A ) |
|
| 4 | nfcv | |- F/_ m A |
|
| 5 | nfcsb1v | |- F/_ k [_ m / k ]_ A |
|
| 6 | 3 4 5 | cbvsum | |- sum_ k e. { M } A = sum_ m e. { M } [_ m / k ]_ A |
| 7 | csbeq1 | |- ( m = ( { <. 1 , M >. } ` n ) -> [_ m / k ]_ A = [_ ( { <. 1 , M >. } ` n ) / k ]_ A ) |
|
| 8 | 1nn | |- 1 e. NN |
|
| 9 | 8 | a1i | |- ( ( M e. V /\ B e. CC ) -> 1 e. NN ) |
| 10 | simpl | |- ( ( M e. V /\ B e. CC ) -> M e. V ) |
|
| 11 | f1osng | |- ( ( 1 e. NN /\ M e. V ) -> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) |
|
| 12 | 8 10 11 | sylancr | |- ( ( M e. V /\ B e. CC ) -> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) |
| 13 | 1z | |- 1 e. ZZ |
|
| 14 | fzsn | |- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
|
| 15 | f1oeq2 | |- ( ( 1 ... 1 ) = { 1 } -> ( { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } <-> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) ) |
|
| 16 | 13 14 15 | mp2b | |- ( { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } <-> { <. 1 , M >. } : { 1 } -1-1-onto-> { M } ) |
| 17 | 12 16 | sylibr | |- ( ( M e. V /\ B e. CC ) -> { <. 1 , M >. } : ( 1 ... 1 ) -1-1-onto-> { M } ) |
| 18 | elsni | |- ( m e. { M } -> m = M ) |
|
| 19 | 18 | adantl | |- ( ( ( M e. V /\ B e. CC ) /\ m e. { M } ) -> m = M ) |
| 20 | 19 | csbeq1d | |- ( ( ( M e. V /\ B e. CC ) /\ m e. { M } ) -> [_ m / k ]_ A = [_ M / k ]_ A ) |
| 21 | 1 | a1i | |- ( M e. V -> F/_ k B ) |
| 22 | 21 2 | csbiegf | |- ( M e. V -> [_ M / k ]_ A = B ) |
| 23 | 22 | ad2antrr | |- ( ( ( M e. V /\ B e. CC ) /\ m e. { M } ) -> [_ M / k ]_ A = B ) |
| 24 | simplr | |- ( ( ( M e. V /\ B e. CC ) /\ m e. { M } ) -> B e. CC ) |
|
| 25 | 23 24 | eqeltrd | |- ( ( ( M e. V /\ B e. CC ) /\ m e. { M } ) -> [_ M / k ]_ A e. CC ) |
| 26 | 20 25 | eqeltrd | |- ( ( ( M e. V /\ B e. CC ) /\ m e. { M } ) -> [_ m / k ]_ A e. CC ) |
| 27 | 22 | ad2antrr | |- ( ( ( M e. V /\ B e. CC ) /\ n e. ( 1 ... 1 ) ) -> [_ M / k ]_ A = B ) |
| 28 | elfz1eq | |- ( n e. ( 1 ... 1 ) -> n = 1 ) |
|
| 29 | 28 | fveq2d | |- ( n e. ( 1 ... 1 ) -> ( { <. 1 , M >. } ` n ) = ( { <. 1 , M >. } ` 1 ) ) |
| 30 | fvsng | |- ( ( 1 e. NN /\ M e. V ) -> ( { <. 1 , M >. } ` 1 ) = M ) |
|
| 31 | 8 10 30 | sylancr | |- ( ( M e. V /\ B e. CC ) -> ( { <. 1 , M >. } ` 1 ) = M ) |
| 32 | 29 31 | sylan9eqr | |- ( ( ( M e. V /\ B e. CC ) /\ n e. ( 1 ... 1 ) ) -> ( { <. 1 , M >. } ` n ) = M ) |
| 33 | 32 | csbeq1d | |- ( ( ( M e. V /\ B e. CC ) /\ n e. ( 1 ... 1 ) ) -> [_ ( { <. 1 , M >. } ` n ) / k ]_ A = [_ M / k ]_ A ) |
| 34 | 28 | fveq2d | |- ( n e. ( 1 ... 1 ) -> ( { <. 1 , B >. } ` n ) = ( { <. 1 , B >. } ` 1 ) ) |
| 35 | simpr | |- ( ( M e. V /\ B e. CC ) -> B e. CC ) |
|
| 36 | fvsng | |- ( ( 1 e. NN /\ B e. CC ) -> ( { <. 1 , B >. } ` 1 ) = B ) |
|
| 37 | 8 35 36 | sylancr | |- ( ( M e. V /\ B e. CC ) -> ( { <. 1 , B >. } ` 1 ) = B ) |
| 38 | 34 37 | sylan9eqr | |- ( ( ( M e. V /\ B e. CC ) /\ n e. ( 1 ... 1 ) ) -> ( { <. 1 , B >. } ` n ) = B ) |
| 39 | 27 33 38 | 3eqtr4rd | |- ( ( ( M e. V /\ B e. CC ) /\ n e. ( 1 ... 1 ) ) -> ( { <. 1 , B >. } ` n ) = [_ ( { <. 1 , M >. } ` n ) / k ]_ A ) |
| 40 | 7 9 17 26 39 | fsum | |- ( ( M e. V /\ B e. CC ) -> sum_ m e. { M } [_ m / k ]_ A = ( seq 1 ( + , { <. 1 , B >. } ) ` 1 ) ) |
| 41 | 6 40 | eqtrid | |- ( ( M e. V /\ B e. CC ) -> sum_ k e. { M } A = ( seq 1 ( + , { <. 1 , B >. } ) ` 1 ) ) |
| 42 | 13 37 | seq1i | |- ( ( M e. V /\ B e. CC ) -> ( seq 1 ( + , { <. 1 , B >. } ) ` 1 ) = B ) |
| 43 | 41 42 | eqtrd | |- ( ( M e. V /\ B e. CC ) -> sum_ k e. { M } A = B ) |