This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a finite sum of complex numbers A ( k ) . A version of fsumcl using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumclf.ph | |- F/ k ph |
|
| fsumclf.a | |- ( ph -> A e. Fin ) |
||
| fsumclf.b | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| Assertion | fsumclf | |- ( ph -> sum_ k e. A B e. CC ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumclf.ph | |- F/ k ph |
|
| 2 | fsumclf.a | |- ( ph -> A e. Fin ) |
|
| 3 | fsumclf.b | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 4 | csbeq1a | |- ( k = j -> B = [_ j / k ]_ B ) |
|
| 5 | nfcv | |- F/_ j B |
|
| 6 | nfcsb1v | |- F/_ k [_ j / k ]_ B |
|
| 7 | 4 5 6 | cbvsum | |- sum_ k e. A B = sum_ j e. A [_ j / k ]_ B |
| 8 | 7 | a1i | |- ( ph -> sum_ k e. A B = sum_ j e. A [_ j / k ]_ B ) |
| 9 | nfv | |- F/ k j e. A |
|
| 10 | 1 9 | nfan | |- F/ k ( ph /\ j e. A ) |
| 11 | 6 | nfel1 | |- F/ k [_ j / k ]_ B e. CC |
| 12 | 10 11 | nfim | |- F/ k ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. CC ) |
| 13 | eleq1w | |- ( k = j -> ( k e. A <-> j e. A ) ) |
|
| 14 | 13 | anbi2d | |- ( k = j -> ( ( ph /\ k e. A ) <-> ( ph /\ j e. A ) ) ) |
| 15 | 4 | eleq1d | |- ( k = j -> ( B e. CC <-> [_ j / k ]_ B e. CC ) ) |
| 16 | 14 15 | imbi12d | |- ( k = j -> ( ( ( ph /\ k e. A ) -> B e. CC ) <-> ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. CC ) ) ) |
| 17 | 12 16 3 | chvarfv | |- ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. CC ) |
| 18 | 2 17 | fsumcl | |- ( ph -> sum_ j e. A [_ j / k ]_ B e. CC ) |
| 19 | 8 18 | eqeltrd | |- ( ph -> sum_ k e. A B e. CC ) |