This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of a class for a setvar variable, with bound-variable hypotheses in place of disjoint variable restrictions. (Contributed by NM, 21-Sep-2003) (Proof shortened by Mario Carneiro, 10-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtoclgf.1 | |- F/_ x A |
|
| vtoclgf.2 | |- F/ x ps |
||
| vtoclgf.3 | |- ( x = A -> ( ph <-> ps ) ) |
||
| vtoclgf.4 | |- ph |
||
| Assertion | vtoclgf | |- ( A e. V -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclgf.1 | |- F/_ x A |
|
| 2 | vtoclgf.2 | |- F/ x ps |
|
| 3 | vtoclgf.3 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 4 | vtoclgf.4 | |- ph |
|
| 5 | elex | |- ( A e. V -> A e. _V ) |
|
| 6 | 1 | issetf | |- ( A e. _V <-> E. x x = A ) |
| 7 | 4 3 | mpbii | |- ( x = A -> ps ) |
| 8 | 2 7 | exlimi | |- ( E. x x = A -> ps ) |
| 9 | 6 8 | sylbi | |- ( A e. _V -> ps ) |
| 10 | 5 9 | syl | |- ( A e. V -> ps ) |