This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of series sum over a finite upper integer index set. (Contributed by Mario Carneiro, 26-Jul-2013) (Revised by Mario Carneiro, 21-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumsers.1 | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
|
| fsumsers.2 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| fsumsers.3 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| fsumsers.4 | |- ( ph -> A C_ ( M ... N ) ) |
||
| Assertion | fsumsers | |- ( ph -> sum_ k e. A B = ( seq M ( + , F ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumsers.1 | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
|
| 2 | fsumsers.2 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 3 | fsumsers.3 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 4 | fsumsers.4 | |- ( ph -> A C_ ( M ... N ) ) |
|
| 5 | eqid | |- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
|
| 6 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 7 | 2 6 | syl | |- ( ph -> M e. ZZ ) |
| 8 | fzssuz | |- ( M ... N ) C_ ( ZZ>= ` M ) |
|
| 9 | 4 8 | sstrdi | |- ( ph -> A C_ ( ZZ>= ` M ) ) |
| 10 | 5 7 9 1 3 | zsum | |- ( ph -> sum_ k e. A B = ( ~~> ` seq M ( + , F ) ) ) |
| 11 | fclim | |- ~~> : dom ~~> --> CC |
|
| 12 | ffun | |- ( ~~> : dom ~~> --> CC -> Fun ~~> ) |
|
| 13 | 11 12 | ax-mp | |- Fun ~~> |
| 14 | 1 2 3 4 | fsumcvg2 | |- ( ph -> seq M ( + , F ) ~~> ( seq M ( + , F ) ` N ) ) |
| 15 | funbrfv | |- ( Fun ~~> -> ( seq M ( + , F ) ~~> ( seq M ( + , F ) ` N ) -> ( ~~> ` seq M ( + , F ) ) = ( seq M ( + , F ) ` N ) ) ) |
|
| 16 | 13 14 15 | mpsyl | |- ( ph -> ( ~~> ` seq M ( + , F ) ) = ( seq M ( + , F ) ` N ) ) |
| 17 | 10 16 | eqtrd | |- ( ph -> sum_ k e. A B = ( seq M ( + , F ) ` N ) ) |