This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumsers.1 | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
|
| fsumsers.2 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| fsumsers.3 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| fsumsers.4 | |- ( ph -> A C_ ( M ... N ) ) |
||
| Assertion | fsumcvg2 | |- ( ph -> seq M ( + , F ) ~~> ( seq M ( + , F ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumsers.1 | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = if ( k e. A , B , 0 ) ) |
|
| 2 | fsumsers.2 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 3 | fsumsers.3 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 4 | fsumsers.4 | |- ( ph -> A C_ ( M ... N ) ) |
|
| 5 | nfcv | |- F/_ m if ( k e. A , B , 0 ) |
|
| 6 | nfv | |- F/ k m e. A |
|
| 7 | nfcsb1v | |- F/_ k [_ m / k ]_ B |
|
| 8 | nfcv | |- F/_ k 0 |
|
| 9 | 6 7 8 | nfif | |- F/_ k if ( m e. A , [_ m / k ]_ B , 0 ) |
| 10 | eleq1w | |- ( k = m -> ( k e. A <-> m e. A ) ) |
|
| 11 | csbeq1a | |- ( k = m -> B = [_ m / k ]_ B ) |
|
| 12 | 10 11 | ifbieq1d | |- ( k = m -> if ( k e. A , B , 0 ) = if ( m e. A , [_ m / k ]_ B , 0 ) ) |
| 13 | 5 9 12 | cbvmpt | |- ( k e. ZZ |-> if ( k e. A , B , 0 ) ) = ( m e. ZZ |-> if ( m e. A , [_ m / k ]_ B , 0 ) ) |
| 14 | 3 | ralrimiva | |- ( ph -> A. k e. A B e. CC ) |
| 15 | 7 | nfel1 | |- F/ k [_ m / k ]_ B e. CC |
| 16 | 11 | eleq1d | |- ( k = m -> ( B e. CC <-> [_ m / k ]_ B e. CC ) ) |
| 17 | 15 16 | rspc | |- ( m e. A -> ( A. k e. A B e. CC -> [_ m / k ]_ B e. CC ) ) |
| 18 | 14 17 | mpan9 | |- ( ( ph /\ m e. A ) -> [_ m / k ]_ B e. CC ) |
| 19 | 13 18 2 4 | fsumcvg | |- ( ph -> seq M ( + , ( k e. ZZ |-> if ( k e. A , B , 0 ) ) ) ~~> ( seq M ( + , ( k e. ZZ |-> if ( k e. A , B , 0 ) ) ) ` N ) ) |
| 20 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 21 | 2 20 | syl | |- ( ph -> M e. ZZ ) |
| 22 | eluzelz | |- ( k e. ( ZZ>= ` M ) -> k e. ZZ ) |
|
| 23 | iftrue | |- ( k e. A -> if ( k e. A , B , 0 ) = B ) |
|
| 24 | 23 | adantl | |- ( ( ph /\ k e. A ) -> if ( k e. A , B , 0 ) = B ) |
| 25 | 24 3 | eqeltrd | |- ( ( ph /\ k e. A ) -> if ( k e. A , B , 0 ) e. CC ) |
| 26 | 25 | ex | |- ( ph -> ( k e. A -> if ( k e. A , B , 0 ) e. CC ) ) |
| 27 | iffalse | |- ( -. k e. A -> if ( k e. A , B , 0 ) = 0 ) |
|
| 28 | 0cn | |- 0 e. CC |
|
| 29 | 27 28 | eqeltrdi | |- ( -. k e. A -> if ( k e. A , B , 0 ) e. CC ) |
| 30 | 26 29 | pm2.61d1 | |- ( ph -> if ( k e. A , B , 0 ) e. CC ) |
| 31 | eqid | |- ( k e. ZZ |-> if ( k e. A , B , 0 ) ) = ( k e. ZZ |-> if ( k e. A , B , 0 ) ) |
|
| 32 | 31 | fvmpt2 | |- ( ( k e. ZZ /\ if ( k e. A , B , 0 ) e. CC ) -> ( ( k e. ZZ |-> if ( k e. A , B , 0 ) ) ` k ) = if ( k e. A , B , 0 ) ) |
| 33 | 22 30 32 | syl2anr | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( k e. ZZ |-> if ( k e. A , B , 0 ) ) ` k ) = if ( k e. A , B , 0 ) ) |
| 34 | 1 33 | eqtr4d | |- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = ( ( k e. ZZ |-> if ( k e. A , B , 0 ) ) ` k ) ) |
| 35 | 34 | ralrimiva | |- ( ph -> A. k e. ( ZZ>= ` M ) ( F ` k ) = ( ( k e. ZZ |-> if ( k e. A , B , 0 ) ) ` k ) ) |
| 36 | nffvmpt1 | |- F/_ k ( ( k e. ZZ |-> if ( k e. A , B , 0 ) ) ` n ) |
|
| 37 | 36 | nfeq2 | |- F/ k ( F ` n ) = ( ( k e. ZZ |-> if ( k e. A , B , 0 ) ) ` n ) |
| 38 | fveq2 | |- ( k = n -> ( F ` k ) = ( F ` n ) ) |
|
| 39 | fveq2 | |- ( k = n -> ( ( k e. ZZ |-> if ( k e. A , B , 0 ) ) ` k ) = ( ( k e. ZZ |-> if ( k e. A , B , 0 ) ) ` n ) ) |
|
| 40 | 38 39 | eqeq12d | |- ( k = n -> ( ( F ` k ) = ( ( k e. ZZ |-> if ( k e. A , B , 0 ) ) ` k ) <-> ( F ` n ) = ( ( k e. ZZ |-> if ( k e. A , B , 0 ) ) ` n ) ) ) |
| 41 | 37 40 | rspc | |- ( n e. ( ZZ>= ` M ) -> ( A. k e. ( ZZ>= ` M ) ( F ` k ) = ( ( k e. ZZ |-> if ( k e. A , B , 0 ) ) ` k ) -> ( F ` n ) = ( ( k e. ZZ |-> if ( k e. A , B , 0 ) ) ` n ) ) ) |
| 42 | 35 41 | mpan9 | |- ( ( ph /\ n e. ( ZZ>= ` M ) ) -> ( F ` n ) = ( ( k e. ZZ |-> if ( k e. A , B , 0 ) ) ` n ) ) |
| 43 | 21 42 | seqfeq | |- ( ph -> seq M ( + , F ) = seq M ( + , ( k e. ZZ |-> if ( k e. A , B , 0 ) ) ) ) |
| 44 | 43 | fveq1d | |- ( ph -> ( seq M ( + , F ) ` N ) = ( seq M ( + , ( k e. ZZ |-> if ( k e. A , B , 0 ) ) ) ` N ) ) |
| 45 | 19 43 44 | 3brtr4d | |- ( ph -> seq M ( + , F ) ~~> ( seq M ( + , F ) ` N ) ) |