This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Number-theoretical functions
fsumfldivdiag
Metamath Proof Explorer
Description: The right-hand side of dvdsflsumcom is commutative in the variables,
because it can be written as the manifestly symmetric sum over those
<. m , n >. such that m x. n <_ A . (Contributed by Mario
Carneiro , 4-May-2016)
Ref
Expression
Hypotheses
fsumfldivdiag.1
⊢ φ → A ∈ ℝ
fsumfldivdiag.2
⊢ φ ∧ n ∈ 1 … A ∧ m ∈ 1 … A n → B ∈ ℂ
Assertion
fsumfldivdiag
⊢ φ → ∑ n = 1 A ∑ m = 1 A n B = ∑ m = 1 A ∑ n = 1 A m B
Proof
Step
Hyp
Ref
Expression
1
fsumfldivdiag.1
⊢ φ → A ∈ ℝ
2
fsumfldivdiag.2
⊢ φ ∧ n ∈ 1 … A ∧ m ∈ 1 … A n → B ∈ ℂ
3
fzfid
⊢ φ → 1 … A ∈ Fin
4
fzfid
⊢ φ ∧ n ∈ 1 … A → 1 … A n ∈ Fin
5
1
fsumfldivdiaglem
⊢ φ → n ∈ 1 … A ∧ m ∈ 1 … A n → m ∈ 1 … A ∧ n ∈ 1 … A m
6
1
fsumfldivdiaglem
⊢ φ → m ∈ 1 … A ∧ n ∈ 1 … A m → n ∈ 1 … A ∧ m ∈ 1 … A n
7
5 6
impbid
⊢ φ → n ∈ 1 … A ∧ m ∈ 1 … A n ↔ m ∈ 1 … A ∧ n ∈ 1 … A m
8
3 3 4 7 2
fsumcom2
⊢ φ → ∑ n = 1 A ∑ m = 1 A n B = ∑ m = 1 A ∑ n = 1 A m B