This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The right-hand side of dvdsflsumcom is commutative in the variables, because it can be written as the manifestly symmetric sum over those <. m , n >. such that m x. n <_ A . (Contributed by Mario Carneiro, 4-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumfldivdiag.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| fsumfldivdiag.2 | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝐵 ∈ ℂ ) | ||
| Assertion | fsumfldivdiag | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) 𝐵 = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑚 ) ) ) 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumfldivdiag.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | fsumfldivdiag.2 | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) → 𝐵 ∈ ℂ ) | |
| 3 | fzfid | ⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) | |
| 4 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ∈ Fin ) | |
| 5 | 1 | fsumfldivdiaglem | ⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) → ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑚 ) ) ) ) ) ) |
| 6 | 1 | fsumfldivdiaglem | ⊢ ( 𝜑 → ( ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑚 ) ) ) ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ) ) |
| 7 | 5 6 | impbid | ⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) ) ↔ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑚 ) ) ) ) ) ) |
| 8 | 3 3 4 7 2 | fsumcom2 | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑛 ) ) ) 𝐵 = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑚 ) ) ) 𝐵 ) |