This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvdsle . (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvdslelem.1 | |- M e. ZZ |
|
| dvdslelem.2 | |- N e. NN |
||
| dvdslelem.3 | |- K e. ZZ |
||
| Assertion | dvdslelem | |- ( N < M -> ( K x. M ) =/= N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdslelem.1 | |- M e. ZZ |
|
| 2 | dvdslelem.2 | |- N e. NN |
|
| 3 | dvdslelem.3 | |- K e. ZZ |
|
| 4 | 3 | zrei | |- K e. RR |
| 5 | 0re | |- 0 e. RR |
|
| 6 | lelttric | |- ( ( K e. RR /\ 0 e. RR ) -> ( K <_ 0 \/ 0 < K ) ) |
|
| 7 | 4 5 6 | mp2an | |- ( K <_ 0 \/ 0 < K ) |
| 8 | zgt0ge1 | |- ( K e. ZZ -> ( 0 < K <-> 1 <_ K ) ) |
|
| 9 | 3 8 | ax-mp | |- ( 0 < K <-> 1 <_ K ) |
| 10 | 9 | orbi2i | |- ( ( K <_ 0 \/ 0 < K ) <-> ( K <_ 0 \/ 1 <_ K ) ) |
| 11 | 7 10 | mpbi | |- ( K <_ 0 \/ 1 <_ K ) |
| 12 | le0neg1 | |- ( K e. RR -> ( K <_ 0 <-> 0 <_ -u K ) ) |
|
| 13 | 4 12 | ax-mp | |- ( K <_ 0 <-> 0 <_ -u K ) |
| 14 | 2 | nngt0i | |- 0 < N |
| 15 | 2 | nnrei | |- N e. RR |
| 16 | 1 | zrei | |- M e. RR |
| 17 | 5 15 16 | lttri | |- ( ( 0 < N /\ N < M ) -> 0 < M ) |
| 18 | 14 17 | mpan | |- ( N < M -> 0 < M ) |
| 19 | 5 16 | ltlei | |- ( 0 < M -> 0 <_ M ) |
| 20 | 18 19 | syl | |- ( N < M -> 0 <_ M ) |
| 21 | 4 | renegcli | |- -u K e. RR |
| 22 | 21 16 | mulge0i | |- ( ( 0 <_ -u K /\ 0 <_ M ) -> 0 <_ ( -u K x. M ) ) |
| 23 | 20 22 | sylan2 | |- ( ( 0 <_ -u K /\ N < M ) -> 0 <_ ( -u K x. M ) ) |
| 24 | 13 23 | sylanb | |- ( ( K <_ 0 /\ N < M ) -> 0 <_ ( -u K x. M ) ) |
| 25 | 24 | expcom | |- ( N < M -> ( K <_ 0 -> 0 <_ ( -u K x. M ) ) ) |
| 26 | 4 16 | remulcli | |- ( K x. M ) e. RR |
| 27 | le0neg1 | |- ( ( K x. M ) e. RR -> ( ( K x. M ) <_ 0 <-> 0 <_ -u ( K x. M ) ) ) |
|
| 28 | 26 27 | ax-mp | |- ( ( K x. M ) <_ 0 <-> 0 <_ -u ( K x. M ) ) |
| 29 | 4 | recni | |- K e. CC |
| 30 | 16 | recni | |- M e. CC |
| 31 | 29 30 | mulneg1i | |- ( -u K x. M ) = -u ( K x. M ) |
| 32 | 31 | breq2i | |- ( 0 <_ ( -u K x. M ) <-> 0 <_ -u ( K x. M ) ) |
| 33 | 28 32 | bitr4i | |- ( ( K x. M ) <_ 0 <-> 0 <_ ( -u K x. M ) ) |
| 34 | 25 33 | imbitrrdi | |- ( N < M -> ( K <_ 0 -> ( K x. M ) <_ 0 ) ) |
| 35 | 26 5 15 | lelttri | |- ( ( ( K x. M ) <_ 0 /\ 0 < N ) -> ( K x. M ) < N ) |
| 36 | 14 35 | mpan2 | |- ( ( K x. M ) <_ 0 -> ( K x. M ) < N ) |
| 37 | 34 36 | syl6 | |- ( N < M -> ( K <_ 0 -> ( K x. M ) < N ) ) |
| 38 | lemulge12 | |- ( ( ( M e. RR /\ K e. RR ) /\ ( 0 <_ M /\ 1 <_ K ) ) -> M <_ ( K x. M ) ) |
|
| 39 | 16 4 38 | mpanl12 | |- ( ( 0 <_ M /\ 1 <_ K ) -> M <_ ( K x. M ) ) |
| 40 | 20 39 | sylan | |- ( ( N < M /\ 1 <_ K ) -> M <_ ( K x. M ) ) |
| 41 | 40 | ex | |- ( N < M -> ( 1 <_ K -> M <_ ( K x. M ) ) ) |
| 42 | 15 16 26 | ltletri | |- ( ( N < M /\ M <_ ( K x. M ) ) -> N < ( K x. M ) ) |
| 43 | 42 | ex | |- ( N < M -> ( M <_ ( K x. M ) -> N < ( K x. M ) ) ) |
| 44 | 41 43 | syld | |- ( N < M -> ( 1 <_ K -> N < ( K x. M ) ) ) |
| 45 | 37 44 | orim12d | |- ( N < M -> ( ( K <_ 0 \/ 1 <_ K ) -> ( ( K x. M ) < N \/ N < ( K x. M ) ) ) ) |
| 46 | 11 45 | mpi | |- ( N < M -> ( ( K x. M ) < N \/ N < ( K x. M ) ) ) |
| 47 | 26 15 | lttri2i | |- ( ( K x. M ) =/= N <-> ( ( K x. M ) < N \/ N < ( K x. M ) ) ) |
| 48 | 46 47 | sylibr | |- ( N < M -> ( K x. M ) =/= N ) |