This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012) (Revised by Mario Carneiro, 7-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fseq1p1m1.1 | |- H = { <. ( N + 1 ) , B >. } |
|
| Assertion | fseq1p1m1 | |- ( N e. NN0 -> ( ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) <-> ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fseq1p1m1.1 | |- H = { <. ( N + 1 ) , B >. } |
|
| 2 | simpr1 | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> F : ( 1 ... N ) --> A ) |
|
| 3 | nn0p1nn | |- ( N e. NN0 -> ( N + 1 ) e. NN ) |
|
| 4 | 3 | adantr | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( N + 1 ) e. NN ) |
| 5 | simpr2 | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> B e. A ) |
|
| 6 | fsng | |- ( ( ( N + 1 ) e. NN /\ B e. A ) -> ( H : { ( N + 1 ) } --> { B } <-> H = { <. ( N + 1 ) , B >. } ) ) |
|
| 7 | 1 6 | mpbiri | |- ( ( ( N + 1 ) e. NN /\ B e. A ) -> H : { ( N + 1 ) } --> { B } ) |
| 8 | 4 5 7 | syl2anc | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> H : { ( N + 1 ) } --> { B } ) |
| 9 | 5 | snssd | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> { B } C_ A ) |
| 10 | 8 9 | fssd | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> H : { ( N + 1 ) } --> A ) |
| 11 | fzp1disj | |- ( ( 1 ... N ) i^i { ( N + 1 ) } ) = (/) |
|
| 12 | 11 | a1i | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( 1 ... N ) i^i { ( N + 1 ) } ) = (/) ) |
| 13 | 2 10 12 | fun2d | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( F u. H ) : ( ( 1 ... N ) u. { ( N + 1 ) } ) --> A ) |
| 14 | 1z | |- 1 e. ZZ |
|
| 15 | simpl | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> N e. NN0 ) |
|
| 16 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 17 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 18 | 17 | fveq2i | |- ( ZZ>= ` ( 1 - 1 ) ) = ( ZZ>= ` 0 ) |
| 19 | 16 18 | eqtr4i | |- NN0 = ( ZZ>= ` ( 1 - 1 ) ) |
| 20 | 15 19 | eleqtrdi | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> N e. ( ZZ>= ` ( 1 - 1 ) ) ) |
| 21 | fzsuc2 | |- ( ( 1 e. ZZ /\ N e. ( ZZ>= ` ( 1 - 1 ) ) ) -> ( 1 ... ( N + 1 ) ) = ( ( 1 ... N ) u. { ( N + 1 ) } ) ) |
|
| 22 | 14 20 21 | sylancr | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( 1 ... ( N + 1 ) ) = ( ( 1 ... N ) u. { ( N + 1 ) } ) ) |
| 23 | 22 | eqcomd | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( 1 ... N ) u. { ( N + 1 ) } ) = ( 1 ... ( N + 1 ) ) ) |
| 24 | 23 | feq2d | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( F u. H ) : ( ( 1 ... N ) u. { ( N + 1 ) } ) --> A <-> ( F u. H ) : ( 1 ... ( N + 1 ) ) --> A ) ) |
| 25 | 13 24 | mpbid | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( F u. H ) : ( 1 ... ( N + 1 ) ) --> A ) |
| 26 | simpr3 | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> G = ( F u. H ) ) |
|
| 27 | 26 | feq1d | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( G : ( 1 ... ( N + 1 ) ) --> A <-> ( F u. H ) : ( 1 ... ( N + 1 ) ) --> A ) ) |
| 28 | 25 27 | mpbird | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> G : ( 1 ... ( N + 1 ) ) --> A ) |
| 29 | ovex | |- ( N + 1 ) e. _V |
|
| 30 | 29 | snid | |- ( N + 1 ) e. { ( N + 1 ) } |
| 31 | fvres | |- ( ( N + 1 ) e. { ( N + 1 ) } -> ( ( G |` { ( N + 1 ) } ) ` ( N + 1 ) ) = ( G ` ( N + 1 ) ) ) |
|
| 32 | 30 31 | ax-mp | |- ( ( G |` { ( N + 1 ) } ) ` ( N + 1 ) ) = ( G ` ( N + 1 ) ) |
| 33 | 26 | reseq1d | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( G |` { ( N + 1 ) } ) = ( ( F u. H ) |` { ( N + 1 ) } ) ) |
| 34 | ffn | |- ( F : ( 1 ... N ) --> A -> F Fn ( 1 ... N ) ) |
|
| 35 | fnresdisj | |- ( F Fn ( 1 ... N ) -> ( ( ( 1 ... N ) i^i { ( N + 1 ) } ) = (/) <-> ( F |` { ( N + 1 ) } ) = (/) ) ) |
|
| 36 | 2 34 35 | 3syl | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( ( 1 ... N ) i^i { ( N + 1 ) } ) = (/) <-> ( F |` { ( N + 1 ) } ) = (/) ) ) |
| 37 | 12 36 | mpbid | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( F |` { ( N + 1 ) } ) = (/) ) |
| 38 | 37 | uneq1d | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( F |` { ( N + 1 ) } ) u. ( H |` { ( N + 1 ) } ) ) = ( (/) u. ( H |` { ( N + 1 ) } ) ) ) |
| 39 | resundir | |- ( ( F u. H ) |` { ( N + 1 ) } ) = ( ( F |` { ( N + 1 ) } ) u. ( H |` { ( N + 1 ) } ) ) |
|
| 40 | uncom | |- ( (/) u. ( H |` { ( N + 1 ) } ) ) = ( ( H |` { ( N + 1 ) } ) u. (/) ) |
|
| 41 | un0 | |- ( ( H |` { ( N + 1 ) } ) u. (/) ) = ( H |` { ( N + 1 ) } ) |
|
| 42 | 40 41 | eqtr2i | |- ( H |` { ( N + 1 ) } ) = ( (/) u. ( H |` { ( N + 1 ) } ) ) |
| 43 | 38 39 42 | 3eqtr4g | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( F u. H ) |` { ( N + 1 ) } ) = ( H |` { ( N + 1 ) } ) ) |
| 44 | ffn | |- ( H : { ( N + 1 ) } --> A -> H Fn { ( N + 1 ) } ) |
|
| 45 | fnresdm | |- ( H Fn { ( N + 1 ) } -> ( H |` { ( N + 1 ) } ) = H ) |
|
| 46 | 10 44 45 | 3syl | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( H |` { ( N + 1 ) } ) = H ) |
| 47 | 33 43 46 | 3eqtrd | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( G |` { ( N + 1 ) } ) = H ) |
| 48 | 47 | fveq1d | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( G |` { ( N + 1 ) } ) ` ( N + 1 ) ) = ( H ` ( N + 1 ) ) ) |
| 49 | 1 | fveq1i | |- ( H ` ( N + 1 ) ) = ( { <. ( N + 1 ) , B >. } ` ( N + 1 ) ) |
| 50 | fvsng | |- ( ( ( N + 1 ) e. NN /\ B e. A ) -> ( { <. ( N + 1 ) , B >. } ` ( N + 1 ) ) = B ) |
|
| 51 | 49 50 | eqtrid | |- ( ( ( N + 1 ) e. NN /\ B e. A ) -> ( H ` ( N + 1 ) ) = B ) |
| 52 | 4 5 51 | syl2anc | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( H ` ( N + 1 ) ) = B ) |
| 53 | 48 52 | eqtrd | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( G |` { ( N + 1 ) } ) ` ( N + 1 ) ) = B ) |
| 54 | 32 53 | eqtr3id | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( G ` ( N + 1 ) ) = B ) |
| 55 | 26 | reseq1d | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( G |` ( 1 ... N ) ) = ( ( F u. H ) |` ( 1 ... N ) ) ) |
| 56 | incom | |- ( { ( N + 1 ) } i^i ( 1 ... N ) ) = ( ( 1 ... N ) i^i { ( N + 1 ) } ) |
|
| 57 | 56 12 | eqtrid | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( { ( N + 1 ) } i^i ( 1 ... N ) ) = (/) ) |
| 58 | ffn | |- ( H : { ( N + 1 ) } --> { B } -> H Fn { ( N + 1 ) } ) |
|
| 59 | fnresdisj | |- ( H Fn { ( N + 1 ) } -> ( ( { ( N + 1 ) } i^i ( 1 ... N ) ) = (/) <-> ( H |` ( 1 ... N ) ) = (/) ) ) |
|
| 60 | 8 58 59 | 3syl | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( { ( N + 1 ) } i^i ( 1 ... N ) ) = (/) <-> ( H |` ( 1 ... N ) ) = (/) ) ) |
| 61 | 57 60 | mpbid | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( H |` ( 1 ... N ) ) = (/) ) |
| 62 | 61 | uneq2d | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( F |` ( 1 ... N ) ) u. ( H |` ( 1 ... N ) ) ) = ( ( F |` ( 1 ... N ) ) u. (/) ) ) |
| 63 | resundir | |- ( ( F u. H ) |` ( 1 ... N ) ) = ( ( F |` ( 1 ... N ) ) u. ( H |` ( 1 ... N ) ) ) |
|
| 64 | un0 | |- ( ( F |` ( 1 ... N ) ) u. (/) ) = ( F |` ( 1 ... N ) ) |
|
| 65 | 64 | eqcomi | |- ( F |` ( 1 ... N ) ) = ( ( F |` ( 1 ... N ) ) u. (/) ) |
| 66 | 62 63 65 | 3eqtr4g | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( ( F u. H ) |` ( 1 ... N ) ) = ( F |` ( 1 ... N ) ) ) |
| 67 | fnresdm | |- ( F Fn ( 1 ... N ) -> ( F |` ( 1 ... N ) ) = F ) |
|
| 68 | 2 34 67 | 3syl | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( F |` ( 1 ... N ) ) = F ) |
| 69 | 55 66 68 | 3eqtrrd | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> F = ( G |` ( 1 ... N ) ) ) |
| 70 | 28 54 69 | 3jca | |- ( ( N e. NN0 /\ ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) -> ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) |
| 71 | simpr1 | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> G : ( 1 ... ( N + 1 ) ) --> A ) |
|
| 72 | fzssp1 | |- ( 1 ... N ) C_ ( 1 ... ( N + 1 ) ) |
|
| 73 | fssres | |- ( ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( 1 ... N ) C_ ( 1 ... ( N + 1 ) ) ) -> ( G |` ( 1 ... N ) ) : ( 1 ... N ) --> A ) |
|
| 74 | 71 72 73 | sylancl | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( G |` ( 1 ... N ) ) : ( 1 ... N ) --> A ) |
| 75 | simpr3 | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> F = ( G |` ( 1 ... N ) ) ) |
|
| 76 | 75 | feq1d | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( F : ( 1 ... N ) --> A <-> ( G |` ( 1 ... N ) ) : ( 1 ... N ) --> A ) ) |
| 77 | 74 76 | mpbird | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> F : ( 1 ... N ) --> A ) |
| 78 | simpr2 | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( G ` ( N + 1 ) ) = B ) |
|
| 79 | 3 | adantr | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( N + 1 ) e. NN ) |
| 80 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 81 | 79 80 | eleqtrdi | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( N + 1 ) e. ( ZZ>= ` 1 ) ) |
| 82 | eluzfz2 | |- ( ( N + 1 ) e. ( ZZ>= ` 1 ) -> ( N + 1 ) e. ( 1 ... ( N + 1 ) ) ) |
|
| 83 | 81 82 | syl | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( N + 1 ) e. ( 1 ... ( N + 1 ) ) ) |
| 84 | 71 83 | ffvelcdmd | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( G ` ( N + 1 ) ) e. A ) |
| 85 | 78 84 | eqeltrrd | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> B e. A ) |
| 86 | ffn | |- ( G : ( 1 ... ( N + 1 ) ) --> A -> G Fn ( 1 ... ( N + 1 ) ) ) |
|
| 87 | 71 86 | syl | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> G Fn ( 1 ... ( N + 1 ) ) ) |
| 88 | fnressn | |- ( ( G Fn ( 1 ... ( N + 1 ) ) /\ ( N + 1 ) e. ( 1 ... ( N + 1 ) ) ) -> ( G |` { ( N + 1 ) } ) = { <. ( N + 1 ) , ( G ` ( N + 1 ) ) >. } ) |
|
| 89 | 87 83 88 | syl2anc | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( G |` { ( N + 1 ) } ) = { <. ( N + 1 ) , ( G ` ( N + 1 ) ) >. } ) |
| 90 | opeq2 | |- ( ( G ` ( N + 1 ) ) = B -> <. ( N + 1 ) , ( G ` ( N + 1 ) ) >. = <. ( N + 1 ) , B >. ) |
|
| 91 | 90 | sneqd | |- ( ( G ` ( N + 1 ) ) = B -> { <. ( N + 1 ) , ( G ` ( N + 1 ) ) >. } = { <. ( N + 1 ) , B >. } ) |
| 92 | 78 91 | syl | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> { <. ( N + 1 ) , ( G ` ( N + 1 ) ) >. } = { <. ( N + 1 ) , B >. } ) |
| 93 | 89 92 | eqtrd | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( G |` { ( N + 1 ) } ) = { <. ( N + 1 ) , B >. } ) |
| 94 | 1 93 | eqtr4id | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> H = ( G |` { ( N + 1 ) } ) ) |
| 95 | 75 94 | uneq12d | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( F u. H ) = ( ( G |` ( 1 ... N ) ) u. ( G |` { ( N + 1 ) } ) ) ) |
| 96 | simpl | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> N e. NN0 ) |
|
| 97 | 96 19 | eleqtrdi | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> N e. ( ZZ>= ` ( 1 - 1 ) ) ) |
| 98 | 14 97 21 | sylancr | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( 1 ... ( N + 1 ) ) = ( ( 1 ... N ) u. { ( N + 1 ) } ) ) |
| 99 | 98 | reseq2d | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( G |` ( 1 ... ( N + 1 ) ) ) = ( G |` ( ( 1 ... N ) u. { ( N + 1 ) } ) ) ) |
| 100 | resundi | |- ( G |` ( ( 1 ... N ) u. { ( N + 1 ) } ) ) = ( ( G |` ( 1 ... N ) ) u. ( G |` { ( N + 1 ) } ) ) |
|
| 101 | 99 100 | eqtr2di | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( ( G |` ( 1 ... N ) ) u. ( G |` { ( N + 1 ) } ) ) = ( G |` ( 1 ... ( N + 1 ) ) ) ) |
| 102 | fnresdm | |- ( G Fn ( 1 ... ( N + 1 ) ) -> ( G |` ( 1 ... ( N + 1 ) ) ) = G ) |
|
| 103 | 71 86 102 | 3syl | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( G |` ( 1 ... ( N + 1 ) ) ) = G ) |
| 104 | 95 101 103 | 3eqtrrd | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> G = ( F u. H ) ) |
| 105 | 77 85 104 | 3jca | |- ( ( N e. NN0 /\ ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) -> ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) ) |
| 106 | 70 105 | impbida | |- ( N e. NN0 -> ( ( F : ( 1 ... N ) --> A /\ B e. A /\ G = ( F u. H ) ) <-> ( G : ( 1 ... ( N + 1 ) ) --> A /\ ( G ` ( N + 1 ) ) = B /\ F = ( G |` ( 1 ... N ) ) ) ) ) |