This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Self-referential definition of the module direct sum. (Contributed by Stefan O'Rear, 7-Jan-2015) (Revised by Stefan O'Rear, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dsmmval2.b | |- B = ( Base ` ( S (+)m R ) ) |
|
| Assertion | dsmmval2 | |- ( S (+)m R ) = ( ( S Xs_ R ) |`s B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsmmval2.b | |- B = ( Base ` ( S (+)m R ) ) |
|
| 2 | ssrab2 | |- { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } C_ ( Base ` ( S Xs_ R ) ) |
|
| 3 | eqid | |- ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) = ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) |
|
| 4 | eqid | |- ( Base ` ( S Xs_ R ) ) = ( Base ` ( S Xs_ R ) ) |
|
| 5 | 3 4 | ressbas2 | |- ( { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } C_ ( Base ` ( S Xs_ R ) ) -> { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } = ( Base ` ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) ) |
| 6 | 2 5 | ax-mp | |- { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } = ( Base ` ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) |
| 7 | 6 | oveq2i | |- ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) = ( ( S Xs_ R ) |`s ( Base ` ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) ) |
| 8 | eqid | |- { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } = { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } |
|
| 9 | 8 | dsmmval | |- ( R e. _V -> ( S (+)m R ) = ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) |
| 10 | 9 | fveq2d | |- ( R e. _V -> ( Base ` ( S (+)m R ) ) = ( Base ` ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) ) |
| 11 | 10 | oveq2d | |- ( R e. _V -> ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) = ( ( S Xs_ R ) |`s ( Base ` ( ( S Xs_ R ) |`s { f e. ( Base ` ( S Xs_ R ) ) | { x e. dom R | ( f ` x ) =/= ( 0g ` ( R ` x ) ) } e. Fin } ) ) ) ) |
| 12 | 7 9 11 | 3eqtr4a | |- ( R e. _V -> ( S (+)m R ) = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) ) |
| 13 | ress0 | |- ( (/) |`s ( Base ` ( S (+)m R ) ) ) = (/) |
|
| 14 | 13 | eqcomi | |- (/) = ( (/) |`s ( Base ` ( S (+)m R ) ) ) |
| 15 | reldmdsmm | |- Rel dom (+)m |
|
| 16 | 15 | ovprc2 | |- ( -. R e. _V -> ( S (+)m R ) = (/) ) |
| 17 | reldmprds | |- Rel dom Xs_ |
|
| 18 | 17 | ovprc2 | |- ( -. R e. _V -> ( S Xs_ R ) = (/) ) |
| 19 | 18 | oveq1d | |- ( -. R e. _V -> ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) = ( (/) |`s ( Base ` ( S (+)m R ) ) ) ) |
| 20 | 14 16 19 | 3eqtr4a | |- ( -. R e. _V -> ( S (+)m R ) = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) ) |
| 21 | 12 20 | pm2.61i | |- ( S (+)m R ) = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) |
| 22 | 1 | oveq2i | |- ( ( S Xs_ R ) |`s B ) = ( ( S Xs_ R ) |`s ( Base ` ( S (+)m R ) ) ) |
| 23 | 21 22 | eqtr4i | |- ( S (+)m R ) = ( ( S Xs_ R ) |`s B ) |