This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A well-founded relation is irreflexive. Special case of Proposition 6.23 of TakeutiZaring p. 30. (Contributed by NM, 2-Jan-1994) (Revised by Mario Carneiro, 22-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frirr | |- ( ( R Fr A /\ B e. A ) -> -. B R B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( R Fr A /\ B e. A ) -> R Fr A ) |
|
| 2 | snssi | |- ( B e. A -> { B } C_ A ) |
|
| 3 | 2 | adantl | |- ( ( R Fr A /\ B e. A ) -> { B } C_ A ) |
| 4 | snnzg | |- ( B e. A -> { B } =/= (/) ) |
|
| 5 | 4 | adantl | |- ( ( R Fr A /\ B e. A ) -> { B } =/= (/) ) |
| 6 | snex | |- { B } e. _V |
|
| 7 | 6 | frc | |- ( ( R Fr A /\ { B } C_ A /\ { B } =/= (/) ) -> E. y e. { B } { x e. { B } | x R y } = (/) ) |
| 8 | 1 3 5 7 | syl3anc | |- ( ( R Fr A /\ B e. A ) -> E. y e. { B } { x e. { B } | x R y } = (/) ) |
| 9 | breq1 | |- ( x = z -> ( x R y <-> z R y ) ) |
|
| 10 | 9 | rabeq0w | |- ( { x e. { B } | x R y } = (/) <-> A. z e. { B } -. z R y ) |
| 11 | breq2 | |- ( y = B -> ( z R y <-> z R B ) ) |
|
| 12 | 11 | notbid | |- ( y = B -> ( -. z R y <-> -. z R B ) ) |
| 13 | 12 | ralbidv | |- ( y = B -> ( A. z e. { B } -. z R y <-> A. z e. { B } -. z R B ) ) |
| 14 | 10 13 | bitrid | |- ( y = B -> ( { x e. { B } | x R y } = (/) <-> A. z e. { B } -. z R B ) ) |
| 15 | 14 | rexsng | |- ( B e. A -> ( E. y e. { B } { x e. { B } | x R y } = (/) <-> A. z e. { B } -. z R B ) ) |
| 16 | breq1 | |- ( z = B -> ( z R B <-> B R B ) ) |
|
| 17 | 16 | notbid | |- ( z = B -> ( -. z R B <-> -. B R B ) ) |
| 18 | 17 | ralsng | |- ( B e. A -> ( A. z e. { B } -. z R B <-> -. B R B ) ) |
| 19 | 15 18 | bitrd | |- ( B e. A -> ( E. y e. { B } { x e. { B } | x R y } = (/) <-> -. B R B ) ) |
| 20 | 19 | adantl | |- ( ( R Fr A /\ B e. A ) -> ( E. y e. { B } { x e. { B } | x R y } = (/) <-> -. B R B ) ) |
| 21 | 8 20 | mpbid | |- ( ( R Fr A /\ B e. A ) -> -. B R B ) |