This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for a restricted class abstraction to be empty. Version of rabeq0 using implicit substitution, which does not require ax-10 , ax-11 , ax-12 , but requires ax-8 . (Contributed by GG, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rabeq0w.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| Assertion | rabeq0w | |- ( { x e. A | ph } = (/) <-> A. y e. A -. ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq0w.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | eleq1w | |- ( x = y -> ( x e. A <-> y e. A ) ) |
|
| 3 | 2 1 | anbi12d | |- ( x = y -> ( ( x e. A /\ ph ) <-> ( y e. A /\ ps ) ) ) |
| 4 | 3 | ab0w | |- ( { x | ( x e. A /\ ph ) } = (/) <-> A. y -. ( y e. A /\ ps ) ) |
| 5 | df-rab | |- { x e. A | ph } = { x | ( x e. A /\ ph ) } |
|
| 6 | 5 | eqeq1i | |- ( { x e. A | ph } = (/) <-> { x | ( x e. A /\ ph ) } = (/) ) |
| 7 | raln | |- ( A. y e. A -. ps <-> A. y -. ( y e. A /\ ps ) ) |
|
| 8 | 4 6 7 | 3bitr4i | |- ( { x e. A | ph } = (/) <-> A. y e. A -. ps ) |