This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of well-founded relation (one direction of definition using class variables). (Contributed by NM, 17-Feb-2004) (Revised by Mario Carneiro, 19-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frc.1 | |- B e. _V |
|
| Assertion | frc | |- ( ( R Fr A /\ B C_ A /\ B =/= (/) ) -> E. x e. B { y e. B | y R x } = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frc.1 | |- B e. _V |
|
| 2 | fri | |- ( ( ( B e. _V /\ R Fr A ) /\ ( B C_ A /\ B =/= (/) ) ) -> E. x e. B A. z e. B -. z R x ) |
|
| 3 | 1 2 | mpanl1 | |- ( ( R Fr A /\ ( B C_ A /\ B =/= (/) ) ) -> E. x e. B A. z e. B -. z R x ) |
| 4 | 3 | 3impb | |- ( ( R Fr A /\ B C_ A /\ B =/= (/) ) -> E. x e. B A. z e. B -. z R x ) |
| 5 | breq1 | |- ( y = z -> ( y R x <-> z R x ) ) |
|
| 6 | 5 | rabeq0w | |- ( { y e. B | y R x } = (/) <-> A. z e. B -. z R x ) |
| 7 | 6 | rexbii | |- ( E. x e. B { y e. B | y R x } = (/) <-> E. x e. B A. z e. B -. z R x ) |
| 8 | 4 7 | sylibr | |- ( ( R Fr A /\ B C_ A /\ B =/= (/) ) -> E. x e. B { y e. B | y R x } = (/) ) |