This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A well-founded relation has no 2-cycle loops. Special case of Proposition 6.23 of TakeutiZaring p. 30. (Contributed by NM, 30-May-1994) (Revised by Mario Carneiro, 22-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fr2nr | |- ( ( R Fr A /\ ( B e. A /\ C e. A ) ) -> -. ( B R C /\ C R B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prex | |- { B , C } e. _V |
|
| 2 | 1 | a1i | |- ( ( R Fr A /\ ( B e. A /\ C e. A ) ) -> { B , C } e. _V ) |
| 3 | simpl | |- ( ( R Fr A /\ ( B e. A /\ C e. A ) ) -> R Fr A ) |
|
| 4 | prssi | |- ( ( B e. A /\ C e. A ) -> { B , C } C_ A ) |
|
| 5 | 4 | adantl | |- ( ( R Fr A /\ ( B e. A /\ C e. A ) ) -> { B , C } C_ A ) |
| 6 | prnzg | |- ( B e. A -> { B , C } =/= (/) ) |
|
| 7 | 6 | ad2antrl | |- ( ( R Fr A /\ ( B e. A /\ C e. A ) ) -> { B , C } =/= (/) ) |
| 8 | fri | |- ( ( ( { B , C } e. _V /\ R Fr A ) /\ ( { B , C } C_ A /\ { B , C } =/= (/) ) ) -> E. y e. { B , C } A. x e. { B , C } -. x R y ) |
|
| 9 | 2 3 5 7 8 | syl22anc | |- ( ( R Fr A /\ ( B e. A /\ C e. A ) ) -> E. y e. { B , C } A. x e. { B , C } -. x R y ) |
| 10 | breq2 | |- ( y = B -> ( x R y <-> x R B ) ) |
|
| 11 | 10 | notbid | |- ( y = B -> ( -. x R y <-> -. x R B ) ) |
| 12 | 11 | ralbidv | |- ( y = B -> ( A. x e. { B , C } -. x R y <-> A. x e. { B , C } -. x R B ) ) |
| 13 | breq2 | |- ( y = C -> ( x R y <-> x R C ) ) |
|
| 14 | 13 | notbid | |- ( y = C -> ( -. x R y <-> -. x R C ) ) |
| 15 | 14 | ralbidv | |- ( y = C -> ( A. x e. { B , C } -. x R y <-> A. x e. { B , C } -. x R C ) ) |
| 16 | 12 15 | rexprg | |- ( ( B e. A /\ C e. A ) -> ( E. y e. { B , C } A. x e. { B , C } -. x R y <-> ( A. x e. { B , C } -. x R B \/ A. x e. { B , C } -. x R C ) ) ) |
| 17 | 16 | adantl | |- ( ( R Fr A /\ ( B e. A /\ C e. A ) ) -> ( E. y e. { B , C } A. x e. { B , C } -. x R y <-> ( A. x e. { B , C } -. x R B \/ A. x e. { B , C } -. x R C ) ) ) |
| 18 | 9 17 | mpbid | |- ( ( R Fr A /\ ( B e. A /\ C e. A ) ) -> ( A. x e. { B , C } -. x R B \/ A. x e. { B , C } -. x R C ) ) |
| 19 | prid2g | |- ( C e. A -> C e. { B , C } ) |
|
| 20 | 19 | ad2antll | |- ( ( R Fr A /\ ( B e. A /\ C e. A ) ) -> C e. { B , C } ) |
| 21 | breq1 | |- ( x = C -> ( x R B <-> C R B ) ) |
|
| 22 | 21 | notbid | |- ( x = C -> ( -. x R B <-> -. C R B ) ) |
| 23 | 22 | rspcv | |- ( C e. { B , C } -> ( A. x e. { B , C } -. x R B -> -. C R B ) ) |
| 24 | 20 23 | syl | |- ( ( R Fr A /\ ( B e. A /\ C e. A ) ) -> ( A. x e. { B , C } -. x R B -> -. C R B ) ) |
| 25 | prid1g | |- ( B e. A -> B e. { B , C } ) |
|
| 26 | 25 | ad2antrl | |- ( ( R Fr A /\ ( B e. A /\ C e. A ) ) -> B e. { B , C } ) |
| 27 | breq1 | |- ( x = B -> ( x R C <-> B R C ) ) |
|
| 28 | 27 | notbid | |- ( x = B -> ( -. x R C <-> -. B R C ) ) |
| 29 | 28 | rspcv | |- ( B e. { B , C } -> ( A. x e. { B , C } -. x R C -> -. B R C ) ) |
| 30 | 26 29 | syl | |- ( ( R Fr A /\ ( B e. A /\ C e. A ) ) -> ( A. x e. { B , C } -. x R C -> -. B R C ) ) |
| 31 | 24 30 | orim12d | |- ( ( R Fr A /\ ( B e. A /\ C e. A ) ) -> ( ( A. x e. { B , C } -. x R B \/ A. x e. { B , C } -. x R C ) -> ( -. C R B \/ -. B R C ) ) ) |
| 32 | 18 31 | mpd | |- ( ( R Fr A /\ ( B e. A /\ C e. A ) ) -> ( -. C R B \/ -. B R C ) ) |
| 33 | 32 | orcomd | |- ( ( R Fr A /\ ( B e. A /\ C e. A ) ) -> ( -. B R C \/ -. C R B ) ) |
| 34 | ianor | |- ( -. ( B R C /\ C R B ) <-> ( -. B R C \/ -. C R B ) ) |
|
| 35 | 33 34 | sylibr | |- ( ( R Fr A /\ ( B e. A /\ C e. A ) ) -> -. ( B R C /\ C R B ) ) |