This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 18-May-2015) (Revised by AV, 20-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| fpwwe2.2 | |- ( ph -> A e. V ) |
||
| fpwwe2.3 | |- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
||
| fpwwe2lem8.x | |- ( ph -> X W R ) |
||
| fpwwe2lem8.y | |- ( ph -> Y W S ) |
||
| fpwwe2lem8.m | |- M = OrdIso ( R , X ) |
||
| fpwwe2lem8.n | |- N = OrdIso ( S , Y ) |
||
| fpwwe2lem5.1 | |- ( ph -> B e. dom M ) |
||
| fpwwe2lem5.2 | |- ( ph -> B e. dom N ) |
||
| fpwwe2lem5.3 | |- ( ph -> ( M |` B ) = ( N |` B ) ) |
||
| Assertion | fpwwe2lem5 | |- ( ( ph /\ C R ( M ` B ) ) -> ( C e. X /\ C e. Y /\ ( `' M ` C ) = ( `' N ` C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe2.1 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
|
| 2 | fpwwe2.2 | |- ( ph -> A e. V ) |
|
| 3 | fpwwe2.3 | |- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
|
| 4 | fpwwe2lem8.x | |- ( ph -> X W R ) |
|
| 5 | fpwwe2lem8.y | |- ( ph -> Y W S ) |
|
| 6 | fpwwe2lem8.m | |- M = OrdIso ( R , X ) |
|
| 7 | fpwwe2lem8.n | |- N = OrdIso ( S , Y ) |
|
| 8 | fpwwe2lem5.1 | |- ( ph -> B e. dom M ) |
|
| 9 | fpwwe2lem5.2 | |- ( ph -> B e. dom N ) |
|
| 10 | fpwwe2lem5.3 | |- ( ph -> ( M |` B ) = ( N |` B ) ) |
|
| 11 | 1 2 | fpwwe2lem2 | |- ( ph -> ( X W R <-> ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) ) |
| 12 | 4 11 | mpbid | |- ( ph -> ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) |
| 13 | 12 | simplrd | |- ( ph -> R C_ ( X X. X ) ) |
| 14 | 13 | ssbrd | |- ( ph -> ( C R ( M ` B ) -> C ( X X. X ) ( M ` B ) ) ) |
| 15 | brxp | |- ( C ( X X. X ) ( M ` B ) <-> ( C e. X /\ ( M ` B ) e. X ) ) |
|
| 16 | 15 | simplbi | |- ( C ( X X. X ) ( M ` B ) -> C e. X ) |
| 17 | 14 16 | syl6 | |- ( ph -> ( C R ( M ` B ) -> C e. X ) ) |
| 18 | 17 | imp | |- ( ( ph /\ C R ( M ` B ) ) -> C e. X ) |
| 19 | imassrn | |- ( N " B ) C_ ran N |
|
| 20 | 1 | relopabiv | |- Rel W |
| 21 | 20 | brrelex1i | |- ( Y W S -> Y e. _V ) |
| 22 | 5 21 | syl | |- ( ph -> Y e. _V ) |
| 23 | 1 2 | fpwwe2lem2 | |- ( ph -> ( Y W S <-> ( ( Y C_ A /\ S C_ ( Y X. Y ) ) /\ ( S We Y /\ A. y e. Y [. ( `' S " { y } ) / u ]. ( u F ( S i^i ( u X. u ) ) ) = y ) ) ) ) |
| 24 | 5 23 | mpbid | |- ( ph -> ( ( Y C_ A /\ S C_ ( Y X. Y ) ) /\ ( S We Y /\ A. y e. Y [. ( `' S " { y } ) / u ]. ( u F ( S i^i ( u X. u ) ) ) = y ) ) ) |
| 25 | 24 | simprld | |- ( ph -> S We Y ) |
| 26 | 7 | oiiso | |- ( ( Y e. _V /\ S We Y ) -> N Isom _E , S ( dom N , Y ) ) |
| 27 | 22 25 26 | syl2anc | |- ( ph -> N Isom _E , S ( dom N , Y ) ) |
| 28 | 27 | adantr | |- ( ( ph /\ C R ( M ` B ) ) -> N Isom _E , S ( dom N , Y ) ) |
| 29 | isof1o | |- ( N Isom _E , S ( dom N , Y ) -> N : dom N -1-1-onto-> Y ) |
|
| 30 | 28 29 | syl | |- ( ( ph /\ C R ( M ` B ) ) -> N : dom N -1-1-onto-> Y ) |
| 31 | f1ofo | |- ( N : dom N -1-1-onto-> Y -> N : dom N -onto-> Y ) |
|
| 32 | forn | |- ( N : dom N -onto-> Y -> ran N = Y ) |
|
| 33 | 30 31 32 | 3syl | |- ( ( ph /\ C R ( M ` B ) ) -> ran N = Y ) |
| 34 | 19 33 | sseqtrid | |- ( ( ph /\ C R ( M ` B ) ) -> ( N " B ) C_ Y ) |
| 35 | 20 | brrelex1i | |- ( X W R -> X e. _V ) |
| 36 | 4 35 | syl | |- ( ph -> X e. _V ) |
| 37 | 12 | simprld | |- ( ph -> R We X ) |
| 38 | 6 | oiiso | |- ( ( X e. _V /\ R We X ) -> M Isom _E , R ( dom M , X ) ) |
| 39 | 36 37 38 | syl2anc | |- ( ph -> M Isom _E , R ( dom M , X ) ) |
| 40 | 39 | adantr | |- ( ( ph /\ C R ( M ` B ) ) -> M Isom _E , R ( dom M , X ) ) |
| 41 | isof1o | |- ( M Isom _E , R ( dom M , X ) -> M : dom M -1-1-onto-> X ) |
|
| 42 | 40 41 | syl | |- ( ( ph /\ C R ( M ` B ) ) -> M : dom M -1-1-onto-> X ) |
| 43 | f1ocnvfv2 | |- ( ( M : dom M -1-1-onto-> X /\ C e. X ) -> ( M ` ( `' M ` C ) ) = C ) |
|
| 44 | 42 18 43 | syl2anc | |- ( ( ph /\ C R ( M ` B ) ) -> ( M ` ( `' M ` C ) ) = C ) |
| 45 | simpr | |- ( ( ph /\ C R ( M ` B ) ) -> C R ( M ` B ) ) |
|
| 46 | 44 45 | eqbrtrd | |- ( ( ph /\ C R ( M ` B ) ) -> ( M ` ( `' M ` C ) ) R ( M ` B ) ) |
| 47 | f1ocnv | |- ( M : dom M -1-1-onto-> X -> `' M : X -1-1-onto-> dom M ) |
|
| 48 | f1of | |- ( `' M : X -1-1-onto-> dom M -> `' M : X --> dom M ) |
|
| 49 | 42 47 48 | 3syl | |- ( ( ph /\ C R ( M ` B ) ) -> `' M : X --> dom M ) |
| 50 | 49 18 | ffvelcdmd | |- ( ( ph /\ C R ( M ` B ) ) -> ( `' M ` C ) e. dom M ) |
| 51 | 8 | adantr | |- ( ( ph /\ C R ( M ` B ) ) -> B e. dom M ) |
| 52 | isorel | |- ( ( M Isom _E , R ( dom M , X ) /\ ( ( `' M ` C ) e. dom M /\ B e. dom M ) ) -> ( ( `' M ` C ) _E B <-> ( M ` ( `' M ` C ) ) R ( M ` B ) ) ) |
|
| 53 | 40 50 51 52 | syl12anc | |- ( ( ph /\ C R ( M ` B ) ) -> ( ( `' M ` C ) _E B <-> ( M ` ( `' M ` C ) ) R ( M ` B ) ) ) |
| 54 | 46 53 | mpbird | |- ( ( ph /\ C R ( M ` B ) ) -> ( `' M ` C ) _E B ) |
| 55 | epelg | |- ( B e. dom M -> ( ( `' M ` C ) _E B <-> ( `' M ` C ) e. B ) ) |
|
| 56 | 51 55 | syl | |- ( ( ph /\ C R ( M ` B ) ) -> ( ( `' M ` C ) _E B <-> ( `' M ` C ) e. B ) ) |
| 57 | 54 56 | mpbid | |- ( ( ph /\ C R ( M ` B ) ) -> ( `' M ` C ) e. B ) |
| 58 | ffn | |- ( `' M : X --> dom M -> `' M Fn X ) |
|
| 59 | elpreima | |- ( `' M Fn X -> ( C e. ( `' `' M " B ) <-> ( C e. X /\ ( `' M ` C ) e. B ) ) ) |
|
| 60 | 49 58 59 | 3syl | |- ( ( ph /\ C R ( M ` B ) ) -> ( C e. ( `' `' M " B ) <-> ( C e. X /\ ( `' M ` C ) e. B ) ) ) |
| 61 | 18 57 60 | mpbir2and | |- ( ( ph /\ C R ( M ` B ) ) -> C e. ( `' `' M " B ) ) |
| 62 | imacnvcnv | |- ( `' `' M " B ) = ( M " B ) |
|
| 63 | 61 62 | eleqtrdi | |- ( ( ph /\ C R ( M ` B ) ) -> C e. ( M " B ) ) |
| 64 | 10 | adantr | |- ( ( ph /\ C R ( M ` B ) ) -> ( M |` B ) = ( N |` B ) ) |
| 65 | 64 | rneqd | |- ( ( ph /\ C R ( M ` B ) ) -> ran ( M |` B ) = ran ( N |` B ) ) |
| 66 | df-ima | |- ( M " B ) = ran ( M |` B ) |
|
| 67 | df-ima | |- ( N " B ) = ran ( N |` B ) |
|
| 68 | 65 66 67 | 3eqtr4g | |- ( ( ph /\ C R ( M ` B ) ) -> ( M " B ) = ( N " B ) ) |
| 69 | 63 68 | eleqtrd | |- ( ( ph /\ C R ( M ` B ) ) -> C e. ( N " B ) ) |
| 70 | 34 69 | sseldd | |- ( ( ph /\ C R ( M ` B ) ) -> C e. Y ) |
| 71 | 64 | cnveqd | |- ( ( ph /\ C R ( M ` B ) ) -> `' ( M |` B ) = `' ( N |` B ) ) |
| 72 | dff1o3 | |- ( M : dom M -1-1-onto-> X <-> ( M : dom M -onto-> X /\ Fun `' M ) ) |
|
| 73 | 72 | simprbi | |- ( M : dom M -1-1-onto-> X -> Fun `' M ) |
| 74 | funcnvres | |- ( Fun `' M -> `' ( M |` B ) = ( `' M |` ( M " B ) ) ) |
|
| 75 | 42 73 74 | 3syl | |- ( ( ph /\ C R ( M ` B ) ) -> `' ( M |` B ) = ( `' M |` ( M " B ) ) ) |
| 76 | dff1o3 | |- ( N : dom N -1-1-onto-> Y <-> ( N : dom N -onto-> Y /\ Fun `' N ) ) |
|
| 77 | 76 | simprbi | |- ( N : dom N -1-1-onto-> Y -> Fun `' N ) |
| 78 | funcnvres | |- ( Fun `' N -> `' ( N |` B ) = ( `' N |` ( N " B ) ) ) |
|
| 79 | 30 77 78 | 3syl | |- ( ( ph /\ C R ( M ` B ) ) -> `' ( N |` B ) = ( `' N |` ( N " B ) ) ) |
| 80 | 71 75 79 | 3eqtr3d | |- ( ( ph /\ C R ( M ` B ) ) -> ( `' M |` ( M " B ) ) = ( `' N |` ( N " B ) ) ) |
| 81 | 80 | fveq1d | |- ( ( ph /\ C R ( M ` B ) ) -> ( ( `' M |` ( M " B ) ) ` C ) = ( ( `' N |` ( N " B ) ) ` C ) ) |
| 82 | 63 | fvresd | |- ( ( ph /\ C R ( M ` B ) ) -> ( ( `' M |` ( M " B ) ) ` C ) = ( `' M ` C ) ) |
| 83 | 69 | fvresd | |- ( ( ph /\ C R ( M ` B ) ) -> ( ( `' N |` ( N " B ) ) ` C ) = ( `' N ` C ) ) |
| 84 | 81 82 83 | 3eqtr3d | |- ( ( ph /\ C R ( M ` B ) ) -> ( `' M ` C ) = ( `' N ` C ) ) |
| 85 | 18 70 84 | 3jca | |- ( ( ph /\ C R ( M ` B ) ) -> ( C e. X /\ C e. Y /\ ( `' M ` C ) = ( `' N ` C ) ) ) |