This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The membership relation and the membership predicate agree when the "containing" class is a set. General version of epel and closed form of epeli . Definition 1.6 of Schloeder p. 1. (Contributed by Scott Fenton, 27-Mar-2011) (Revised by Mario Carneiro, 28-Apr-2015) (Proof shortened by BJ, 14-Jul-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | epelg | |- ( B e. V -> ( A _E B <-> A e. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br | |- ( A _E B <-> <. A , B >. e. _E ) |
|
| 2 | 0nelopab | |- -. (/) e. { <. x , y >. | x e. y } |
|
| 3 | df-eprel | |- _E = { <. x , y >. | x e. y } |
|
| 4 | 3 | eqcomi | |- { <. x , y >. | x e. y } = _E |
| 5 | 4 | eleq2i | |- ( (/) e. { <. x , y >. | x e. y } <-> (/) e. _E ) |
| 6 | 2 5 | mtbi | |- -. (/) e. _E |
| 7 | eleq1 | |- ( <. A , B >. = (/) -> ( <. A , B >. e. _E <-> (/) e. _E ) ) |
|
| 8 | 6 7 | mtbiri | |- ( <. A , B >. = (/) -> -. <. A , B >. e. _E ) |
| 9 | 8 | con2i | |- ( <. A , B >. e. _E -> -. <. A , B >. = (/) ) |
| 10 | opprc1 | |- ( -. A e. _V -> <. A , B >. = (/) ) |
|
| 11 | 9 10 | nsyl2 | |- ( <. A , B >. e. _E -> A e. _V ) |
| 12 | 1 11 | sylbi | |- ( A _E B -> A e. _V ) |
| 13 | 12 | a1i | |- ( B e. V -> ( A _E B -> A e. _V ) ) |
| 14 | elex | |- ( A e. B -> A e. _V ) |
|
| 15 | 14 | a1i | |- ( B e. V -> ( A e. B -> A e. _V ) ) |
| 16 | eleq12 | |- ( ( x = A /\ y = B ) -> ( x e. y <-> A e. B ) ) |
|
| 17 | 16 3 | brabga | |- ( ( A e. _V /\ B e. V ) -> ( A _E B <-> A e. B ) ) |
| 18 | 17 | expcom | |- ( B e. V -> ( A e. _V -> ( A _E B <-> A e. B ) ) ) |
| 19 | 13 15 18 | pm5.21ndd | |- ( B e. V -> ( A _E B <-> A e. B ) ) |