This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the index set to a subset in a finite product. (Contributed by Scott Fenton, 16-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodss.1 | |- ( ph -> A C_ B ) |
|
| fprodss.2 | |- ( ( ph /\ k e. A ) -> C e. CC ) |
||
| fprodss.3 | |- ( ( ph /\ k e. ( B \ A ) ) -> C = 1 ) |
||
| fprodss.4 | |- ( ph -> B e. Fin ) |
||
| Assertion | fprodss | |- ( ph -> prod_ k e. A C = prod_ k e. B C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodss.1 | |- ( ph -> A C_ B ) |
|
| 2 | fprodss.2 | |- ( ( ph /\ k e. A ) -> C e. CC ) |
|
| 3 | fprodss.3 | |- ( ( ph /\ k e. ( B \ A ) ) -> C = 1 ) |
|
| 4 | fprodss.4 | |- ( ph -> B e. Fin ) |
|
| 5 | sseq2 | |- ( B = (/) -> ( A C_ B <-> A C_ (/) ) ) |
|
| 6 | ss0 | |- ( A C_ (/) -> A = (/) ) |
|
| 7 | 5 6 | biimtrdi | |- ( B = (/) -> ( A C_ B -> A = (/) ) ) |
| 8 | prodeq1 | |- ( A = (/) -> prod_ k e. A C = prod_ k e. (/) C ) |
|
| 9 | prodeq1 | |- ( B = (/) -> prod_ k e. B C = prod_ k e. (/) C ) |
|
| 10 | 9 | eqcomd | |- ( B = (/) -> prod_ k e. (/) C = prod_ k e. B C ) |
| 11 | 8 10 | sylan9eq | |- ( ( A = (/) /\ B = (/) ) -> prod_ k e. A C = prod_ k e. B C ) |
| 12 | 11 | expcom | |- ( B = (/) -> ( A = (/) -> prod_ k e. A C = prod_ k e. B C ) ) |
| 13 | 7 12 | syld | |- ( B = (/) -> ( A C_ B -> prod_ k e. A C = prod_ k e. B C ) ) |
| 14 | 1 13 | syl5com | |- ( ph -> ( B = (/) -> prod_ k e. A C = prod_ k e. B C ) ) |
| 15 | cnvimass | |- ( `' f " A ) C_ dom f |
|
| 16 | simprr | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) |
|
| 17 | f1of | |- ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B -> f : ( 1 ... ( # ` B ) ) --> B ) |
|
| 18 | 16 17 | syl | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> f : ( 1 ... ( # ` B ) ) --> B ) |
| 19 | 15 18 | fssdm | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( `' f " A ) C_ ( 1 ... ( # ` B ) ) ) |
| 20 | f1ofn | |- ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B -> f Fn ( 1 ... ( # ` B ) ) ) |
|
| 21 | elpreima | |- ( f Fn ( 1 ... ( # ` B ) ) -> ( n e. ( `' f " A ) <-> ( n e. ( 1 ... ( # ` B ) ) /\ ( f ` n ) e. A ) ) ) |
|
| 22 | 16 20 21 | 3syl | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( n e. ( `' f " A ) <-> ( n e. ( 1 ... ( # ` B ) ) /\ ( f ` n ) e. A ) ) ) |
| 23 | 18 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( 1 ... ( # ` B ) ) ) -> ( f ` n ) e. B ) |
| 24 | 23 | ex | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( n e. ( 1 ... ( # ` B ) ) -> ( f ` n ) e. B ) ) |
| 25 | 24 | adantrd | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( ( n e. ( 1 ... ( # ` B ) ) /\ ( f ` n ) e. A ) -> ( f ` n ) e. B ) ) |
| 26 | 22 25 | sylbid | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( n e. ( `' f " A ) -> ( f ` n ) e. B ) ) |
| 27 | 26 | imp | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( `' f " A ) ) -> ( f ` n ) e. B ) |
| 28 | 2 | ex | |- ( ph -> ( k e. A -> C e. CC ) ) |
| 29 | 28 | adantr | |- ( ( ph /\ k e. B ) -> ( k e. A -> C e. CC ) ) |
| 30 | eldif | |- ( k e. ( B \ A ) <-> ( k e. B /\ -. k e. A ) ) |
|
| 31 | ax-1cn | |- 1 e. CC |
|
| 32 | 3 31 | eqeltrdi | |- ( ( ph /\ k e. ( B \ A ) ) -> C e. CC ) |
| 33 | 30 32 | sylan2br | |- ( ( ph /\ ( k e. B /\ -. k e. A ) ) -> C e. CC ) |
| 34 | 33 | expr | |- ( ( ph /\ k e. B ) -> ( -. k e. A -> C e. CC ) ) |
| 35 | 29 34 | pm2.61d | |- ( ( ph /\ k e. B ) -> C e. CC ) |
| 36 | 35 | adantlr | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ k e. B ) -> C e. CC ) |
| 37 | 36 | fmpttd | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( k e. B |-> C ) : B --> CC ) |
| 38 | 37 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ ( f ` n ) e. B ) -> ( ( k e. B |-> C ) ` ( f ` n ) ) e. CC ) |
| 39 | 27 38 | syldan | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( `' f " A ) ) -> ( ( k e. B |-> C ) ` ( f ` n ) ) e. CC ) |
| 40 | eqid | |- ( ZZ>= ` 1 ) = ( ZZ>= ` 1 ) |
|
| 41 | simprl | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( # ` B ) e. NN ) |
|
| 42 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 43 | 41 42 | eleqtrdi | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( # ` B ) e. ( ZZ>= ` 1 ) ) |
| 44 | ssidd | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( 1 ... ( # ` B ) ) C_ ( 1 ... ( # ` B ) ) ) |
|
| 45 | 40 43 44 | fprodntriv | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> E. m e. ( ZZ>= ` 1 ) E. y ( y =/= 0 /\ seq m ( x. , ( n e. ( ZZ>= ` 1 ) |-> if ( n e. ( 1 ... ( # ` B ) ) , ( ( k e. B |-> C ) ` ( f ` n ) ) , 1 ) ) ) ~~> y ) ) |
| 46 | eldifi | |- ( n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) -> n e. ( 1 ... ( # ` B ) ) ) |
|
| 47 | 46 23 | sylan2 | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( f ` n ) e. B ) |
| 48 | eldifn | |- ( n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) -> -. n e. ( `' f " A ) ) |
|
| 49 | 48 | adantl | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> -. n e. ( `' f " A ) ) |
| 50 | 46 | adantl | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> n e. ( 1 ... ( # ` B ) ) ) |
| 51 | 22 | adantr | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( n e. ( `' f " A ) <-> ( n e. ( 1 ... ( # ` B ) ) /\ ( f ` n ) e. A ) ) ) |
| 52 | 50 51 | mpbirand | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( n e. ( `' f " A ) <-> ( f ` n ) e. A ) ) |
| 53 | 49 52 | mtbid | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> -. ( f ` n ) e. A ) |
| 54 | 47 53 | eldifd | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( f ` n ) e. ( B \ A ) ) |
| 55 | difss | |- ( B \ A ) C_ B |
|
| 56 | resmpt | |- ( ( B \ A ) C_ B -> ( ( k e. B |-> C ) |` ( B \ A ) ) = ( k e. ( B \ A ) |-> C ) ) |
|
| 57 | 55 56 | ax-mp | |- ( ( k e. B |-> C ) |` ( B \ A ) ) = ( k e. ( B \ A ) |-> C ) |
| 58 | 57 | fveq1i | |- ( ( ( k e. B |-> C ) |` ( B \ A ) ) ` ( f ` n ) ) = ( ( k e. ( B \ A ) |-> C ) ` ( f ` n ) ) |
| 59 | fvres | |- ( ( f ` n ) e. ( B \ A ) -> ( ( ( k e. B |-> C ) |` ( B \ A ) ) ` ( f ` n ) ) = ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
|
| 60 | 58 59 | eqtr3id | |- ( ( f ` n ) e. ( B \ A ) -> ( ( k e. ( B \ A ) |-> C ) ` ( f ` n ) ) = ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
| 61 | 54 60 | syl | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( ( k e. ( B \ A ) |-> C ) ` ( f ` n ) ) = ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
| 62 | 1ex | |- 1 e. _V |
|
| 63 | 62 | elsn2 | |- ( C e. { 1 } <-> C = 1 ) |
| 64 | 3 63 | sylibr | |- ( ( ph /\ k e. ( B \ A ) ) -> C e. { 1 } ) |
| 65 | 64 | fmpttd | |- ( ph -> ( k e. ( B \ A ) |-> C ) : ( B \ A ) --> { 1 } ) |
| 66 | 65 | ad2antrr | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( k e. ( B \ A ) |-> C ) : ( B \ A ) --> { 1 } ) |
| 67 | 66 54 | ffvelcdmd | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( ( k e. ( B \ A ) |-> C ) ` ( f ` n ) ) e. { 1 } ) |
| 68 | elsni | |- ( ( ( k e. ( B \ A ) |-> C ) ` ( f ` n ) ) e. { 1 } -> ( ( k e. ( B \ A ) |-> C ) ` ( f ` n ) ) = 1 ) |
|
| 69 | 67 68 | syl | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( ( k e. ( B \ A ) |-> C ) ` ( f ` n ) ) = 1 ) |
| 70 | 61 69 | eqtr3d | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( ( 1 ... ( # ` B ) ) \ ( `' f " A ) ) ) -> ( ( k e. B |-> C ) ` ( f ` n ) ) = 1 ) |
| 71 | fzssuz | |- ( 1 ... ( # ` B ) ) C_ ( ZZ>= ` 1 ) |
|
| 72 | 71 | a1i | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( 1 ... ( # ` B ) ) C_ ( ZZ>= ` 1 ) ) |
| 73 | 19 39 45 70 72 | prodss | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> prod_ n e. ( `' f " A ) ( ( k e. B |-> C ) ` ( f ` n ) ) = prod_ n e. ( 1 ... ( # ` B ) ) ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
| 74 | 1 | adantr | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> A C_ B ) |
| 75 | 74 | resmptd | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( ( k e. B |-> C ) |` A ) = ( k e. A |-> C ) ) |
| 76 | 75 | fveq1d | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( ( ( k e. B |-> C ) |` A ) ` m ) = ( ( k e. A |-> C ) ` m ) ) |
| 77 | fvres | |- ( m e. A -> ( ( ( k e. B |-> C ) |` A ) ` m ) = ( ( k e. B |-> C ) ` m ) ) |
|
| 78 | 76 77 | sylan9req | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ m e. A ) -> ( ( k e. A |-> C ) ` m ) = ( ( k e. B |-> C ) ` m ) ) |
| 79 | 78 | prodeq2dv | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> prod_ m e. A ( ( k e. A |-> C ) ` m ) = prod_ m e. A ( ( k e. B |-> C ) ` m ) ) |
| 80 | fveq2 | |- ( m = ( f ` n ) -> ( ( k e. B |-> C ) ` m ) = ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
|
| 81 | fzfid | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( 1 ... ( # ` B ) ) e. Fin ) |
|
| 82 | 81 18 | fisuppfi | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( `' f " A ) e. Fin ) |
| 83 | f1of1 | |- ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B -> f : ( 1 ... ( # ` B ) ) -1-1-> B ) |
|
| 84 | 16 83 | syl | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> f : ( 1 ... ( # ` B ) ) -1-1-> B ) |
| 85 | f1ores | |- ( ( f : ( 1 ... ( # ` B ) ) -1-1-> B /\ ( `' f " A ) C_ ( 1 ... ( # ` B ) ) ) -> ( f |` ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> ( f " ( `' f " A ) ) ) |
|
| 86 | 84 19 85 | syl2anc | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( f |` ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> ( f " ( `' f " A ) ) ) |
| 87 | f1ofo | |- ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B -> f : ( 1 ... ( # ` B ) ) -onto-> B ) |
|
| 88 | 16 87 | syl | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> f : ( 1 ... ( # ` B ) ) -onto-> B ) |
| 89 | foimacnv | |- ( ( f : ( 1 ... ( # ` B ) ) -onto-> B /\ A C_ B ) -> ( f " ( `' f " A ) ) = A ) |
|
| 90 | 88 74 89 | syl2anc | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( f " ( `' f " A ) ) = A ) |
| 91 | 90 | f1oeq3d | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( ( f |` ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> ( f " ( `' f " A ) ) <-> ( f |` ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> A ) ) |
| 92 | 86 91 | mpbid | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> ( f |` ( `' f " A ) ) : ( `' f " A ) -1-1-onto-> A ) |
| 93 | fvres | |- ( n e. ( `' f " A ) -> ( ( f |` ( `' f " A ) ) ` n ) = ( f ` n ) ) |
|
| 94 | 93 | adantl | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( `' f " A ) ) -> ( ( f |` ( `' f " A ) ) ` n ) = ( f ` n ) ) |
| 95 | 74 | sselda | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ m e. A ) -> m e. B ) |
| 96 | 37 | ffvelcdmda | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ m e. B ) -> ( ( k e. B |-> C ) ` m ) e. CC ) |
| 97 | 95 96 | syldan | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ m e. A ) -> ( ( k e. B |-> C ) ` m ) e. CC ) |
| 98 | 80 82 92 94 97 | fprodf1o | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> prod_ m e. A ( ( k e. B |-> C ) ` m ) = prod_ n e. ( `' f " A ) ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
| 99 | 79 98 | eqtrd | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> prod_ m e. A ( ( k e. A |-> C ) ` m ) = prod_ n e. ( `' f " A ) ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
| 100 | eqidd | |- ( ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) /\ n e. ( 1 ... ( # ` B ) ) ) -> ( f ` n ) = ( f ` n ) ) |
|
| 101 | 80 81 16 100 96 | fprodf1o | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> prod_ m e. B ( ( k e. B |-> C ) ` m ) = prod_ n e. ( 1 ... ( # ` B ) ) ( ( k e. B |-> C ) ` ( f ` n ) ) ) |
| 102 | 73 99 101 | 3eqtr4d | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> prod_ m e. A ( ( k e. A |-> C ) ` m ) = prod_ m e. B ( ( k e. B |-> C ) ` m ) ) |
| 103 | prodfc | |- prod_ m e. A ( ( k e. A |-> C ) ` m ) = prod_ k e. A C |
|
| 104 | prodfc | |- prod_ m e. B ( ( k e. B |-> C ) ` m ) = prod_ k e. B C |
|
| 105 | 102 103 104 | 3eqtr3g | |- ( ( ph /\ ( ( # ` B ) e. NN /\ f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) -> prod_ k e. A C = prod_ k e. B C ) |
| 106 | 105 | expr | |- ( ( ph /\ ( # ` B ) e. NN ) -> ( f : ( 1 ... ( # ` B ) ) -1-1-onto-> B -> prod_ k e. A C = prod_ k e. B C ) ) |
| 107 | 106 | exlimdv | |- ( ( ph /\ ( # ` B ) e. NN ) -> ( E. f f : ( 1 ... ( # ` B ) ) -1-1-onto-> B -> prod_ k e. A C = prod_ k e. B C ) ) |
| 108 | 107 | expimpd | |- ( ph -> ( ( ( # ` B ) e. NN /\ E. f f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) -> prod_ k e. A C = prod_ k e. B C ) ) |
| 109 | fz1f1o | |- ( B e. Fin -> ( B = (/) \/ ( ( # ` B ) e. NN /\ E. f f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) ) |
|
| 110 | 4 109 | syl | |- ( ph -> ( B = (/) \/ ( ( # ` B ) e. NN /\ E. f f : ( 1 ... ( # ` B ) ) -1-1-onto-> B ) ) ) |
| 111 | 14 108 110 | mpjaod | |- ( ph -> prod_ k e. A C = prod_ k e. B C ) |