This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite product expressed in terms of a partial product of an infinite sequence. The recursive definition of a finite product follows from here. (Contributed by Scott Fenton, 14-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodser.1 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) = A ) |
|
| fprodser.2 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| fprodser.3 | |- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
||
| Assertion | fprodser | |- ( ph -> prod_ k e. ( M ... N ) A = ( seq M ( x. , F ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodser.1 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) = A ) |
|
| 2 | fprodser.2 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 3 | fprodser.3 | |- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
|
| 4 | prodfc | |- prod_ j e. ( M ... N ) ( ( k e. ( M ... N ) |-> A ) ` j ) = prod_ k e. ( M ... N ) A |
|
| 5 | fveq2 | |- ( j = ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ` m ) -> ( ( k e. ( M ... N ) |-> A ) ` j ) = ( ( k e. ( M ... N ) |-> A ) ` ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ` m ) ) ) |
|
| 6 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 7 | 2 6 | syl | |- ( ph -> N e. ZZ ) |
| 8 | 7 | zcnd | |- ( ph -> N e. CC ) |
| 9 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 10 | 2 9 | syl | |- ( ph -> M e. ZZ ) |
| 11 | 10 | zcnd | |- ( ph -> M e. CC ) |
| 12 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 13 | 8 11 12 | subadd23d | |- ( ph -> ( ( N - M ) + 1 ) = ( N + ( 1 - M ) ) ) |
| 14 | 13 | eqcomd | |- ( ph -> ( N + ( 1 - M ) ) = ( ( N - M ) + 1 ) ) |
| 15 | uznn0sub | |- ( N e. ( ZZ>= ` M ) -> ( N - M ) e. NN0 ) |
|
| 16 | 2 15 | syl | |- ( ph -> ( N - M ) e. NN0 ) |
| 17 | nn0p1nn | |- ( ( N - M ) e. NN0 -> ( ( N - M ) + 1 ) e. NN ) |
|
| 18 | 16 17 | syl | |- ( ph -> ( ( N - M ) + 1 ) e. NN ) |
| 19 | 14 18 | eqeltrd | |- ( ph -> ( N + ( 1 - M ) ) e. NN ) |
| 20 | 12 11 | pncan3d | |- ( ph -> ( 1 + ( M - 1 ) ) = M ) |
| 21 | 8 12 11 | pnpncand | |- ( ph -> ( ( N + ( 1 - M ) ) + ( M - 1 ) ) = N ) |
| 22 | 20 21 | oveq12d | |- ( ph -> ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) = ( M ... N ) ) |
| 23 | 22 | eleq2d | |- ( ph -> ( p e. ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) <-> p e. ( M ... N ) ) ) |
| 24 | 23 | biimpa | |- ( ( ph /\ p e. ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) ) -> p e. ( M ... N ) ) |
| 25 | elfzelz | |- ( p e. ( M ... N ) -> p e. ZZ ) |
|
| 26 | 25 | zcnd | |- ( p e. ( M ... N ) -> p e. CC ) |
| 27 | 26 | adantl | |- ( ( ph /\ p e. ( M ... N ) ) -> p e. CC ) |
| 28 | peano2zm | |- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
|
| 29 | 10 28 | syl | |- ( ph -> ( M - 1 ) e. ZZ ) |
| 30 | 29 | zcnd | |- ( ph -> ( M - 1 ) e. CC ) |
| 31 | 30 | adantr | |- ( ( ph /\ p e. ( M ... N ) ) -> ( M - 1 ) e. CC ) |
| 32 | 27 31 | npcand | |- ( ( ph /\ p e. ( M ... N ) ) -> ( ( p - ( M - 1 ) ) + ( M - 1 ) ) = p ) |
| 33 | simpr | |- ( ( ph /\ p e. ( M ... N ) ) -> p e. ( M ... N ) ) |
|
| 34 | 32 33 | eqeltrd | |- ( ( ph /\ p e. ( M ... N ) ) -> ( ( p - ( M - 1 ) ) + ( M - 1 ) ) e. ( M ... N ) ) |
| 35 | ovex | |- ( p - ( M - 1 ) ) e. _V |
|
| 36 | oveq1 | |- ( n = ( p - ( M - 1 ) ) -> ( n + ( M - 1 ) ) = ( ( p - ( M - 1 ) ) + ( M - 1 ) ) ) |
|
| 37 | 36 | eleq1d | |- ( n = ( p - ( M - 1 ) ) -> ( ( n + ( M - 1 ) ) e. ( M ... N ) <-> ( ( p - ( M - 1 ) ) + ( M - 1 ) ) e. ( M ... N ) ) ) |
| 38 | 35 37 | sbcie | |- ( [. ( p - ( M - 1 ) ) / n ]. ( n + ( M - 1 ) ) e. ( M ... N ) <-> ( ( p - ( M - 1 ) ) + ( M - 1 ) ) e. ( M ... N ) ) |
| 39 | 34 38 | sylibr | |- ( ( ph /\ p e. ( M ... N ) ) -> [. ( p - ( M - 1 ) ) / n ]. ( n + ( M - 1 ) ) e. ( M ... N ) ) |
| 40 | 24 39 | syldan | |- ( ( ph /\ p e. ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) ) -> [. ( p - ( M - 1 ) ) / n ]. ( n + ( M - 1 ) ) e. ( M ... N ) ) |
| 41 | 40 | ralrimiva | |- ( ph -> A. p e. ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) [. ( p - ( M - 1 ) ) / n ]. ( n + ( M - 1 ) ) e. ( M ... N ) ) |
| 42 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 43 | 19 | nnzd | |- ( ph -> ( N + ( 1 - M ) ) e. ZZ ) |
| 44 | fzshftral | |- ( ( 1 e. ZZ /\ ( N + ( 1 - M ) ) e. ZZ /\ ( M - 1 ) e. ZZ ) -> ( A. n e. ( 1 ... ( N + ( 1 - M ) ) ) ( n + ( M - 1 ) ) e. ( M ... N ) <-> A. p e. ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) [. ( p - ( M - 1 ) ) / n ]. ( n + ( M - 1 ) ) e. ( M ... N ) ) ) |
|
| 45 | 42 43 29 44 | syl3anc | |- ( ph -> ( A. n e. ( 1 ... ( N + ( 1 - M ) ) ) ( n + ( M - 1 ) ) e. ( M ... N ) <-> A. p e. ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) [. ( p - ( M - 1 ) ) / n ]. ( n + ( M - 1 ) ) e. ( M ... N ) ) ) |
| 46 | 41 45 | mpbird | |- ( ph -> A. n e. ( 1 ... ( N + ( 1 - M ) ) ) ( n + ( M - 1 ) ) e. ( M ... N ) ) |
| 47 | 10 | adantr | |- ( ( ph /\ p e. ( M ... N ) ) -> M e. ZZ ) |
| 48 | 7 | adantr | |- ( ( ph /\ p e. ( M ... N ) ) -> N e. ZZ ) |
| 49 | 25 | adantl | |- ( ( ph /\ p e. ( M ... N ) ) -> p e. ZZ ) |
| 50 | 29 | adantr | |- ( ( ph /\ p e. ( M ... N ) ) -> ( M - 1 ) e. ZZ ) |
| 51 | fzsubel | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( p e. ZZ /\ ( M - 1 ) e. ZZ ) ) -> ( p e. ( M ... N ) <-> ( p - ( M - 1 ) ) e. ( ( M - ( M - 1 ) ) ... ( N - ( M - 1 ) ) ) ) ) |
|
| 52 | 47 48 49 50 51 | syl22anc | |- ( ( ph /\ p e. ( M ... N ) ) -> ( p e. ( M ... N ) <-> ( p - ( M - 1 ) ) e. ( ( M - ( M - 1 ) ) ... ( N - ( M - 1 ) ) ) ) ) |
| 53 | 33 52 | mpbid | |- ( ( ph /\ p e. ( M ... N ) ) -> ( p - ( M - 1 ) ) e. ( ( M - ( M - 1 ) ) ... ( N - ( M - 1 ) ) ) ) |
| 54 | 11 12 | nncand | |- ( ph -> ( M - ( M - 1 ) ) = 1 ) |
| 55 | 8 11 12 | subsub2d | |- ( ph -> ( N - ( M - 1 ) ) = ( N + ( 1 - M ) ) ) |
| 56 | 54 55 | oveq12d | |- ( ph -> ( ( M - ( M - 1 ) ) ... ( N - ( M - 1 ) ) ) = ( 1 ... ( N + ( 1 - M ) ) ) ) |
| 57 | 56 | adantr | |- ( ( ph /\ p e. ( M ... N ) ) -> ( ( M - ( M - 1 ) ) ... ( N - ( M - 1 ) ) ) = ( 1 ... ( N + ( 1 - M ) ) ) ) |
| 58 | 53 57 | eleqtrd | |- ( ( ph /\ p e. ( M ... N ) ) -> ( p - ( M - 1 ) ) e. ( 1 ... ( N + ( 1 - M ) ) ) ) |
| 59 | 32 | eqcomd | |- ( ( ph /\ p e. ( M ... N ) ) -> p = ( ( p - ( M - 1 ) ) + ( M - 1 ) ) ) |
| 60 | 36 | rspceeqv | |- ( ( ( p - ( M - 1 ) ) e. ( 1 ... ( N + ( 1 - M ) ) ) /\ p = ( ( p - ( M - 1 ) ) + ( M - 1 ) ) ) -> E. n e. ( 1 ... ( N + ( 1 - M ) ) ) p = ( n + ( M - 1 ) ) ) |
| 61 | 58 59 60 | syl2anc | |- ( ( ph /\ p e. ( M ... N ) ) -> E. n e. ( 1 ... ( N + ( 1 - M ) ) ) p = ( n + ( M - 1 ) ) ) |
| 62 | elfzelz | |- ( n e. ( 1 ... ( N + ( 1 - M ) ) ) -> n e. ZZ ) |
|
| 63 | 62 | zcnd | |- ( n e. ( 1 ... ( N + ( 1 - M ) ) ) -> n e. CC ) |
| 64 | elfzelz | |- ( m e. ( 1 ... ( N + ( 1 - M ) ) ) -> m e. ZZ ) |
|
| 65 | 64 | zcnd | |- ( m e. ( 1 ... ( N + ( 1 - M ) ) ) -> m e. CC ) |
| 66 | 63 65 | anim12i | |- ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( n e. CC /\ m e. CC ) ) |
| 67 | eqtr2 | |- ( ( p = ( n + ( M - 1 ) ) /\ p = ( m + ( M - 1 ) ) ) -> ( n + ( M - 1 ) ) = ( m + ( M - 1 ) ) ) |
|
| 68 | simprl | |- ( ( ph /\ ( n e. CC /\ m e. CC ) ) -> n e. CC ) |
|
| 69 | simprr | |- ( ( ph /\ ( n e. CC /\ m e. CC ) ) -> m e. CC ) |
|
| 70 | 30 | adantr | |- ( ( ph /\ ( n e. CC /\ m e. CC ) ) -> ( M - 1 ) e. CC ) |
| 71 | 68 69 70 | addcan2d | |- ( ( ph /\ ( n e. CC /\ m e. CC ) ) -> ( ( n + ( M - 1 ) ) = ( m + ( M - 1 ) ) <-> n = m ) ) |
| 72 | 67 71 | imbitrid | |- ( ( ph /\ ( n e. CC /\ m e. CC ) ) -> ( ( p = ( n + ( M - 1 ) ) /\ p = ( m + ( M - 1 ) ) ) -> n = m ) ) |
| 73 | 66 72 | sylan2 | |- ( ( ph /\ ( n e. ( 1 ... ( N + ( 1 - M ) ) ) /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) ) -> ( ( p = ( n + ( M - 1 ) ) /\ p = ( m + ( M - 1 ) ) ) -> n = m ) ) |
| 74 | 73 | ralrimivva | |- ( ph -> A. n e. ( 1 ... ( N + ( 1 - M ) ) ) A. m e. ( 1 ... ( N + ( 1 - M ) ) ) ( ( p = ( n + ( M - 1 ) ) /\ p = ( m + ( M - 1 ) ) ) -> n = m ) ) |
| 75 | 74 | adantr | |- ( ( ph /\ p e. ( M ... N ) ) -> A. n e. ( 1 ... ( N + ( 1 - M ) ) ) A. m e. ( 1 ... ( N + ( 1 - M ) ) ) ( ( p = ( n + ( M - 1 ) ) /\ p = ( m + ( M - 1 ) ) ) -> n = m ) ) |
| 76 | oveq1 | |- ( n = m -> ( n + ( M - 1 ) ) = ( m + ( M - 1 ) ) ) |
|
| 77 | 76 | eqeq2d | |- ( n = m -> ( p = ( n + ( M - 1 ) ) <-> p = ( m + ( M - 1 ) ) ) ) |
| 78 | 77 | reu4 | |- ( E! n e. ( 1 ... ( N + ( 1 - M ) ) ) p = ( n + ( M - 1 ) ) <-> ( E. n e. ( 1 ... ( N + ( 1 - M ) ) ) p = ( n + ( M - 1 ) ) /\ A. n e. ( 1 ... ( N + ( 1 - M ) ) ) A. m e. ( 1 ... ( N + ( 1 - M ) ) ) ( ( p = ( n + ( M - 1 ) ) /\ p = ( m + ( M - 1 ) ) ) -> n = m ) ) ) |
| 79 | 61 75 78 | sylanbrc | |- ( ( ph /\ p e. ( M ... N ) ) -> E! n e. ( 1 ... ( N + ( 1 - M ) ) ) p = ( n + ( M - 1 ) ) ) |
| 80 | 79 | ralrimiva | |- ( ph -> A. p e. ( M ... N ) E! n e. ( 1 ... ( N + ( 1 - M ) ) ) p = ( n + ( M - 1 ) ) ) |
| 81 | eqid | |- ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) = ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) |
|
| 82 | 81 | f1ompt | |- ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) : ( 1 ... ( N + ( 1 - M ) ) ) -1-1-onto-> ( M ... N ) <-> ( A. n e. ( 1 ... ( N + ( 1 - M ) ) ) ( n + ( M - 1 ) ) e. ( M ... N ) /\ A. p e. ( M ... N ) E! n e. ( 1 ... ( N + ( 1 - M ) ) ) p = ( n + ( M - 1 ) ) ) ) |
| 83 | 46 80 82 | sylanbrc | |- ( ph -> ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) : ( 1 ... ( N + ( 1 - M ) ) ) -1-1-onto-> ( M ... N ) ) |
| 84 | 3 | fmpttd | |- ( ph -> ( k e. ( M ... N ) |-> A ) : ( M ... N ) --> CC ) |
| 85 | 84 | ffvelcdmda | |- ( ( ph /\ j e. ( M ... N ) ) -> ( ( k e. ( M ... N ) |-> A ) ` j ) e. CC ) |
| 86 | simpr | |- ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> m e. ( 1 ... ( N + ( 1 - M ) ) ) ) |
|
| 87 | 1zzd | |- ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> 1 e. ZZ ) |
|
| 88 | 43 | adantr | |- ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( N + ( 1 - M ) ) e. ZZ ) |
| 89 | 64 | adantl | |- ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> m e. ZZ ) |
| 90 | 29 | adantr | |- ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( M - 1 ) e. ZZ ) |
| 91 | fzaddel | |- ( ( ( 1 e. ZZ /\ ( N + ( 1 - M ) ) e. ZZ ) /\ ( m e. ZZ /\ ( M - 1 ) e. ZZ ) ) -> ( m e. ( 1 ... ( N + ( 1 - M ) ) ) <-> ( m + ( M - 1 ) ) e. ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) ) ) |
|
| 92 | 87 88 89 90 91 | syl22anc | |- ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( m e. ( 1 ... ( N + ( 1 - M ) ) ) <-> ( m + ( M - 1 ) ) e. ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) ) ) |
| 93 | 86 92 | mpbid | |- ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( m + ( M - 1 ) ) e. ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) ) |
| 94 | 22 | adantr | |- ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( ( 1 + ( M - 1 ) ) ... ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) = ( M ... N ) ) |
| 95 | 93 94 | eleqtrd | |- ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( m + ( M - 1 ) ) e. ( M ... N ) ) |
| 96 | 1 | ralrimiva | |- ( ph -> A. k e. ( M ... N ) ( F ` k ) = A ) |
| 97 | nfcsb1v | |- F/_ k [_ ( m + ( M - 1 ) ) / k ]_ A |
|
| 98 | 97 | nfeq2 | |- F/ k ( F ` ( m + ( M - 1 ) ) ) = [_ ( m + ( M - 1 ) ) / k ]_ A |
| 99 | fveq2 | |- ( k = ( m + ( M - 1 ) ) -> ( F ` k ) = ( F ` ( m + ( M - 1 ) ) ) ) |
|
| 100 | csbeq1a | |- ( k = ( m + ( M - 1 ) ) -> A = [_ ( m + ( M - 1 ) ) / k ]_ A ) |
|
| 101 | 99 100 | eqeq12d | |- ( k = ( m + ( M - 1 ) ) -> ( ( F ` k ) = A <-> ( F ` ( m + ( M - 1 ) ) ) = [_ ( m + ( M - 1 ) ) / k ]_ A ) ) |
| 102 | 98 101 | rspc | |- ( ( m + ( M - 1 ) ) e. ( M ... N ) -> ( A. k e. ( M ... N ) ( F ` k ) = A -> ( F ` ( m + ( M - 1 ) ) ) = [_ ( m + ( M - 1 ) ) / k ]_ A ) ) |
| 103 | 96 102 | mpan9 | |- ( ( ph /\ ( m + ( M - 1 ) ) e. ( M ... N ) ) -> ( F ` ( m + ( M - 1 ) ) ) = [_ ( m + ( M - 1 ) ) / k ]_ A ) |
| 104 | 95 103 | syldan | |- ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( F ` ( m + ( M - 1 ) ) ) = [_ ( m + ( M - 1 ) ) / k ]_ A ) |
| 105 | f1of | |- ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) : ( 1 ... ( N + ( 1 - M ) ) ) -1-1-onto-> ( M ... N ) -> ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) : ( 1 ... ( N + ( 1 - M ) ) ) --> ( M ... N ) ) |
|
| 106 | 83 105 | syl | |- ( ph -> ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) : ( 1 ... ( N + ( 1 - M ) ) ) --> ( M ... N ) ) |
| 107 | fvco3 | |- ( ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) : ( 1 ... ( N + ( 1 - M ) ) ) --> ( M ... N ) /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( ( F o. ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ) ` m ) = ( F ` ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ` m ) ) ) |
|
| 108 | 106 107 | sylan | |- ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( ( F o. ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ) ` m ) = ( F ` ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ` m ) ) ) |
| 109 | ovex | |- ( m + ( M - 1 ) ) e. _V |
|
| 110 | 76 81 109 | fvmpt | |- ( m e. ( 1 ... ( N + ( 1 - M ) ) ) -> ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ` m ) = ( m + ( M - 1 ) ) ) |
| 111 | 110 | adantl | |- ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ` m ) = ( m + ( M - 1 ) ) ) |
| 112 | 111 | fveq2d | |- ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( F ` ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ` m ) ) = ( F ` ( m + ( M - 1 ) ) ) ) |
| 113 | 108 112 | eqtrd | |- ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( ( F o. ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ) ` m ) = ( F ` ( m + ( M - 1 ) ) ) ) |
| 114 | 111 | fveq2d | |- ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( ( k e. ( M ... N ) |-> A ) ` ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ` m ) ) = ( ( k e. ( M ... N ) |-> A ) ` ( m + ( M - 1 ) ) ) ) |
| 115 | 3 | ralrimiva | |- ( ph -> A. k e. ( M ... N ) A e. CC ) |
| 116 | 97 | nfel1 | |- F/ k [_ ( m + ( M - 1 ) ) / k ]_ A e. CC |
| 117 | 100 | eleq1d | |- ( k = ( m + ( M - 1 ) ) -> ( A e. CC <-> [_ ( m + ( M - 1 ) ) / k ]_ A e. CC ) ) |
| 118 | 116 117 | rspc | |- ( ( m + ( M - 1 ) ) e. ( M ... N ) -> ( A. k e. ( M ... N ) A e. CC -> [_ ( m + ( M - 1 ) ) / k ]_ A e. CC ) ) |
| 119 | 115 118 | mpan9 | |- ( ( ph /\ ( m + ( M - 1 ) ) e. ( M ... N ) ) -> [_ ( m + ( M - 1 ) ) / k ]_ A e. CC ) |
| 120 | 95 119 | syldan | |- ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> [_ ( m + ( M - 1 ) ) / k ]_ A e. CC ) |
| 121 | eqid | |- ( k e. ( M ... N ) |-> A ) = ( k e. ( M ... N ) |-> A ) |
|
| 122 | 121 | fvmpts | |- ( ( ( m + ( M - 1 ) ) e. ( M ... N ) /\ [_ ( m + ( M - 1 ) ) / k ]_ A e. CC ) -> ( ( k e. ( M ... N ) |-> A ) ` ( m + ( M - 1 ) ) ) = [_ ( m + ( M - 1 ) ) / k ]_ A ) |
| 123 | 95 120 122 | syl2anc | |- ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( ( k e. ( M ... N ) |-> A ) ` ( m + ( M - 1 ) ) ) = [_ ( m + ( M - 1 ) ) / k ]_ A ) |
| 124 | 114 123 | eqtrd | |- ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( ( k e. ( M ... N ) |-> A ) ` ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ` m ) ) = [_ ( m + ( M - 1 ) ) / k ]_ A ) |
| 125 | 104 113 124 | 3eqtr4d | |- ( ( ph /\ m e. ( 1 ... ( N + ( 1 - M ) ) ) ) -> ( ( F o. ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ) ` m ) = ( ( k e. ( M ... N ) |-> A ) ` ( ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ` m ) ) ) |
| 126 | 5 19 83 85 125 | fprod | |- ( ph -> prod_ j e. ( M ... N ) ( ( k e. ( M ... N ) |-> A ) ` j ) = ( seq 1 ( x. , ( F o. ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ) ) ` ( N + ( 1 - M ) ) ) ) |
| 127 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 128 | 19 127 | eleqtrdi | |- ( ph -> ( N + ( 1 - M ) ) e. ( ZZ>= ` 1 ) ) |
| 129 | 128 29 113 | seqshft2 | |- ( ph -> ( seq 1 ( x. , ( F o. ( n e. ( 1 ... ( N + ( 1 - M ) ) ) |-> ( n + ( M - 1 ) ) ) ) ) ` ( N + ( 1 - M ) ) ) = ( seq ( 1 + ( M - 1 ) ) ( x. , F ) ` ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) ) |
| 130 | 20 | seqeq1d | |- ( ph -> seq ( 1 + ( M - 1 ) ) ( x. , F ) = seq M ( x. , F ) ) |
| 131 | 130 21 | fveq12d | |- ( ph -> ( seq ( 1 + ( M - 1 ) ) ( x. , F ) ` ( ( N + ( 1 - M ) ) + ( M - 1 ) ) ) = ( seq M ( x. , F ) ` N ) ) |
| 132 | 126 129 131 | 3eqtrd | |- ( ph -> prod_ j e. ( M ... N ) ( ( k e. ( M ... N ) |-> A ) ` j ) = ( seq M ( x. , F ) ` N ) ) |
| 133 | 4 132 | eqtr3id | |- ( ph -> prod_ k e. ( M ... N ) A = ( seq M ( x. , F ) ` N ) ) |