This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a finite product into two parts. (Contributed by Scott Fenton, 16-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodsplit.1 | |- ( ph -> ( A i^i B ) = (/) ) |
|
| fprodsplit.2 | |- ( ph -> U = ( A u. B ) ) |
||
| fprodsplit.3 | |- ( ph -> U e. Fin ) |
||
| fprodsplit.4 | |- ( ( ph /\ k e. U ) -> C e. CC ) |
||
| Assertion | fprodsplit | |- ( ph -> prod_ k e. U C = ( prod_ k e. A C x. prod_ k e. B C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodsplit.1 | |- ( ph -> ( A i^i B ) = (/) ) |
|
| 2 | fprodsplit.2 | |- ( ph -> U = ( A u. B ) ) |
|
| 3 | fprodsplit.3 | |- ( ph -> U e. Fin ) |
|
| 4 | fprodsplit.4 | |- ( ( ph /\ k e. U ) -> C e. CC ) |
|
| 5 | iftrue | |- ( k e. A -> if ( k e. A , C , 1 ) = C ) |
|
| 6 | 5 | prodeq2i | |- prod_ k e. A if ( k e. A , C , 1 ) = prod_ k e. A C |
| 7 | ssun1 | |- A C_ ( A u. B ) |
|
| 8 | 7 2 | sseqtrrid | |- ( ph -> A C_ U ) |
| 9 | 5 | adantl | |- ( ( ph /\ k e. A ) -> if ( k e. A , C , 1 ) = C ) |
| 10 | 8 | sselda | |- ( ( ph /\ k e. A ) -> k e. U ) |
| 11 | 10 4 | syldan | |- ( ( ph /\ k e. A ) -> C e. CC ) |
| 12 | 9 11 | eqeltrd | |- ( ( ph /\ k e. A ) -> if ( k e. A , C , 1 ) e. CC ) |
| 13 | eldifn | |- ( k e. ( U \ A ) -> -. k e. A ) |
|
| 14 | 13 | iffalsed | |- ( k e. ( U \ A ) -> if ( k e. A , C , 1 ) = 1 ) |
| 15 | 14 | adantl | |- ( ( ph /\ k e. ( U \ A ) ) -> if ( k e. A , C , 1 ) = 1 ) |
| 16 | 8 12 15 3 | fprodss | |- ( ph -> prod_ k e. A if ( k e. A , C , 1 ) = prod_ k e. U if ( k e. A , C , 1 ) ) |
| 17 | 6 16 | eqtr3id | |- ( ph -> prod_ k e. A C = prod_ k e. U if ( k e. A , C , 1 ) ) |
| 18 | iftrue | |- ( k e. B -> if ( k e. B , C , 1 ) = C ) |
|
| 19 | 18 | prodeq2i | |- prod_ k e. B if ( k e. B , C , 1 ) = prod_ k e. B C |
| 20 | ssun2 | |- B C_ ( A u. B ) |
|
| 21 | 20 2 | sseqtrrid | |- ( ph -> B C_ U ) |
| 22 | 18 | adantl | |- ( ( ph /\ k e. B ) -> if ( k e. B , C , 1 ) = C ) |
| 23 | 21 | sselda | |- ( ( ph /\ k e. B ) -> k e. U ) |
| 24 | 23 4 | syldan | |- ( ( ph /\ k e. B ) -> C e. CC ) |
| 25 | 22 24 | eqeltrd | |- ( ( ph /\ k e. B ) -> if ( k e. B , C , 1 ) e. CC ) |
| 26 | eldifn | |- ( k e. ( U \ B ) -> -. k e. B ) |
|
| 27 | 26 | iffalsed | |- ( k e. ( U \ B ) -> if ( k e. B , C , 1 ) = 1 ) |
| 28 | 27 | adantl | |- ( ( ph /\ k e. ( U \ B ) ) -> if ( k e. B , C , 1 ) = 1 ) |
| 29 | 21 25 28 3 | fprodss | |- ( ph -> prod_ k e. B if ( k e. B , C , 1 ) = prod_ k e. U if ( k e. B , C , 1 ) ) |
| 30 | 19 29 | eqtr3id | |- ( ph -> prod_ k e. B C = prod_ k e. U if ( k e. B , C , 1 ) ) |
| 31 | 17 30 | oveq12d | |- ( ph -> ( prod_ k e. A C x. prod_ k e. B C ) = ( prod_ k e. U if ( k e. A , C , 1 ) x. prod_ k e. U if ( k e. B , C , 1 ) ) ) |
| 32 | ax-1cn | |- 1 e. CC |
|
| 33 | ifcl | |- ( ( C e. CC /\ 1 e. CC ) -> if ( k e. A , C , 1 ) e. CC ) |
|
| 34 | 4 32 33 | sylancl | |- ( ( ph /\ k e. U ) -> if ( k e. A , C , 1 ) e. CC ) |
| 35 | ifcl | |- ( ( C e. CC /\ 1 e. CC ) -> if ( k e. B , C , 1 ) e. CC ) |
|
| 36 | 4 32 35 | sylancl | |- ( ( ph /\ k e. U ) -> if ( k e. B , C , 1 ) e. CC ) |
| 37 | 3 34 36 | fprodmul | |- ( ph -> prod_ k e. U ( if ( k e. A , C , 1 ) x. if ( k e. B , C , 1 ) ) = ( prod_ k e. U if ( k e. A , C , 1 ) x. prod_ k e. U if ( k e. B , C , 1 ) ) ) |
| 38 | 2 | eleq2d | |- ( ph -> ( k e. U <-> k e. ( A u. B ) ) ) |
| 39 | elun | |- ( k e. ( A u. B ) <-> ( k e. A \/ k e. B ) ) |
|
| 40 | 38 39 | bitrdi | |- ( ph -> ( k e. U <-> ( k e. A \/ k e. B ) ) ) |
| 41 | 40 | biimpa | |- ( ( ph /\ k e. U ) -> ( k e. A \/ k e. B ) ) |
| 42 | disjel | |- ( ( ( A i^i B ) = (/) /\ k e. A ) -> -. k e. B ) |
|
| 43 | 1 42 | sylan | |- ( ( ph /\ k e. A ) -> -. k e. B ) |
| 44 | 43 | iffalsed | |- ( ( ph /\ k e. A ) -> if ( k e. B , C , 1 ) = 1 ) |
| 45 | 9 44 | oveq12d | |- ( ( ph /\ k e. A ) -> ( if ( k e. A , C , 1 ) x. if ( k e. B , C , 1 ) ) = ( C x. 1 ) ) |
| 46 | 11 | mulridd | |- ( ( ph /\ k e. A ) -> ( C x. 1 ) = C ) |
| 47 | 45 46 | eqtrd | |- ( ( ph /\ k e. A ) -> ( if ( k e. A , C , 1 ) x. if ( k e. B , C , 1 ) ) = C ) |
| 48 | 43 | ex | |- ( ph -> ( k e. A -> -. k e. B ) ) |
| 49 | 48 | con2d | |- ( ph -> ( k e. B -> -. k e. A ) ) |
| 50 | 49 | imp | |- ( ( ph /\ k e. B ) -> -. k e. A ) |
| 51 | 50 | iffalsed | |- ( ( ph /\ k e. B ) -> if ( k e. A , C , 1 ) = 1 ) |
| 52 | 51 22 | oveq12d | |- ( ( ph /\ k e. B ) -> ( if ( k e. A , C , 1 ) x. if ( k e. B , C , 1 ) ) = ( 1 x. C ) ) |
| 53 | 24 | mullidd | |- ( ( ph /\ k e. B ) -> ( 1 x. C ) = C ) |
| 54 | 52 53 | eqtrd | |- ( ( ph /\ k e. B ) -> ( if ( k e. A , C , 1 ) x. if ( k e. B , C , 1 ) ) = C ) |
| 55 | 47 54 | jaodan | |- ( ( ph /\ ( k e. A \/ k e. B ) ) -> ( if ( k e. A , C , 1 ) x. if ( k e. B , C , 1 ) ) = C ) |
| 56 | 41 55 | syldan | |- ( ( ph /\ k e. U ) -> ( if ( k e. A , C , 1 ) x. if ( k e. B , C , 1 ) ) = C ) |
| 57 | 56 | prodeq2dv | |- ( ph -> prod_ k e. U ( if ( k e. A , C , 1 ) x. if ( k e. B , C , 1 ) ) = prod_ k e. U C ) |
| 58 | 31 37 57 | 3eqtr2rd | |- ( ph -> prod_ k e. U C = ( prod_ k e. A C x. prod_ k e. B C ) ) |