This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out the last term in a finite product. (Contributed by Scott Fenton, 16-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodm1.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| fprodm1.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
||
| fprodm1.3 | |- ( k = N -> A = B ) |
||
| Assertion | fprodm1 | |- ( ph -> prod_ k e. ( M ... N ) A = ( prod_ k e. ( M ... ( N - 1 ) ) A x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodm1.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 2 | fprodm1.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
|
| 3 | fprodm1.3 | |- ( k = N -> A = B ) |
|
| 4 | fzp1nel | |- -. ( ( N - 1 ) + 1 ) e. ( M ... ( N - 1 ) ) |
|
| 5 | eluzelz | |- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
|
| 6 | 1 5 | syl | |- ( ph -> N e. ZZ ) |
| 7 | 6 | zcnd | |- ( ph -> N e. CC ) |
| 8 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 9 | 7 8 | npcand | |- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
| 10 | 9 | eleq1d | |- ( ph -> ( ( ( N - 1 ) + 1 ) e. ( M ... ( N - 1 ) ) <-> N e. ( M ... ( N - 1 ) ) ) ) |
| 11 | 4 10 | mtbii | |- ( ph -> -. N e. ( M ... ( N - 1 ) ) ) |
| 12 | disjsn | |- ( ( ( M ... ( N - 1 ) ) i^i { N } ) = (/) <-> -. N e. ( M ... ( N - 1 ) ) ) |
|
| 13 | 11 12 | sylibr | |- ( ph -> ( ( M ... ( N - 1 ) ) i^i { N } ) = (/) ) |
| 14 | eluzel2 | |- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
|
| 15 | 1 14 | syl | |- ( ph -> M e. ZZ ) |
| 16 | peano2zm | |- ( M e. ZZ -> ( M - 1 ) e. ZZ ) |
|
| 17 | 15 16 | syl | |- ( ph -> ( M - 1 ) e. ZZ ) |
| 18 | 15 | zcnd | |- ( ph -> M e. CC ) |
| 19 | 18 8 | npcand | |- ( ph -> ( ( M - 1 ) + 1 ) = M ) |
| 20 | 19 | fveq2d | |- ( ph -> ( ZZ>= ` ( ( M - 1 ) + 1 ) ) = ( ZZ>= ` M ) ) |
| 21 | 1 20 | eleqtrrd | |- ( ph -> N e. ( ZZ>= ` ( ( M - 1 ) + 1 ) ) ) |
| 22 | eluzp1m1 | |- ( ( ( M - 1 ) e. ZZ /\ N e. ( ZZ>= ` ( ( M - 1 ) + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) |
|
| 23 | 17 21 22 | syl2anc | |- ( ph -> ( N - 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) |
| 24 | fzsuc2 | |- ( ( M e. ZZ /\ ( N - 1 ) e. ( ZZ>= ` ( M - 1 ) ) ) -> ( M ... ( ( N - 1 ) + 1 ) ) = ( ( M ... ( N - 1 ) ) u. { ( ( N - 1 ) + 1 ) } ) ) |
|
| 25 | 15 23 24 | syl2anc | |- ( ph -> ( M ... ( ( N - 1 ) + 1 ) ) = ( ( M ... ( N - 1 ) ) u. { ( ( N - 1 ) + 1 ) } ) ) |
| 26 | 9 | oveq2d | |- ( ph -> ( M ... ( ( N - 1 ) + 1 ) ) = ( M ... N ) ) |
| 27 | 9 | sneqd | |- ( ph -> { ( ( N - 1 ) + 1 ) } = { N } ) |
| 28 | 27 | uneq2d | |- ( ph -> ( ( M ... ( N - 1 ) ) u. { ( ( N - 1 ) + 1 ) } ) = ( ( M ... ( N - 1 ) ) u. { N } ) ) |
| 29 | 25 26 28 | 3eqtr3d | |- ( ph -> ( M ... N ) = ( ( M ... ( N - 1 ) ) u. { N } ) ) |
| 30 | fzfid | |- ( ph -> ( M ... N ) e. Fin ) |
|
| 31 | 13 29 30 2 | fprodsplit | |- ( ph -> prod_ k e. ( M ... N ) A = ( prod_ k e. ( M ... ( N - 1 ) ) A x. prod_ k e. { N } A ) ) |
| 32 | 3 | eleq1d | |- ( k = N -> ( A e. CC <-> B e. CC ) ) |
| 33 | 2 | ralrimiva | |- ( ph -> A. k e. ( M ... N ) A e. CC ) |
| 34 | eluzfz2 | |- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
|
| 35 | 1 34 | syl | |- ( ph -> N e. ( M ... N ) ) |
| 36 | 32 33 35 | rspcdva | |- ( ph -> B e. CC ) |
| 37 | 3 | prodsn | |- ( ( N e. ( ZZ>= ` M ) /\ B e. CC ) -> prod_ k e. { N } A = B ) |
| 38 | 1 36 37 | syl2anc | |- ( ph -> prod_ k e. { N } A = B ) |
| 39 | 38 | oveq2d | |- ( ph -> ( prod_ k e. ( M ... ( N - 1 ) ) A x. prod_ k e. { N } A ) = ( prod_ k e. ( M ... ( N - 1 ) ) A x. B ) ) |
| 40 | 31 39 | eqtrd | |- ( ph -> prod_ k e. ( M ... N ) A = ( prod_ k e. ( M ... ( N - 1 ) ) A x. B ) ) |