This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for prodrb . (Contributed by Scott Fenton, 4-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodmo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
|
| prodmo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
||
| prodrb.4 | |- ( ph -> M e. ZZ ) |
||
| prodrb.5 | |- ( ph -> N e. ZZ ) |
||
| prodrb.6 | |- ( ph -> A C_ ( ZZ>= ` M ) ) |
||
| prodrb.7 | |- ( ph -> A C_ ( ZZ>= ` N ) ) |
||
| Assertion | prodrblem2 | |- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( seq M ( x. , F ) ~~> C <-> seq N ( x. , F ) ~~> C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodmo.1 | |- F = ( k e. ZZ |-> if ( k e. A , B , 1 ) ) |
|
| 2 | prodmo.2 | |- ( ( ph /\ k e. A ) -> B e. CC ) |
|
| 3 | prodrb.4 | |- ( ph -> M e. ZZ ) |
|
| 4 | prodrb.5 | |- ( ph -> N e. ZZ ) |
|
| 5 | prodrb.6 | |- ( ph -> A C_ ( ZZ>= ` M ) ) |
|
| 6 | prodrb.7 | |- ( ph -> A C_ ( ZZ>= ` N ) ) |
|
| 7 | 4 | adantr | |- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> N e. ZZ ) |
| 8 | seqex | |- seq M ( x. , F ) e. _V |
|
| 9 | climres | |- ( ( N e. ZZ /\ seq M ( x. , F ) e. _V ) -> ( ( seq M ( x. , F ) |` ( ZZ>= ` N ) ) ~~> C <-> seq M ( x. , F ) ~~> C ) ) |
|
| 10 | 7 8 9 | sylancl | |- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( ( seq M ( x. , F ) |` ( ZZ>= ` N ) ) ~~> C <-> seq M ( x. , F ) ~~> C ) ) |
| 11 | 2 | adantlr | |- ( ( ( ph /\ N e. ( ZZ>= ` M ) ) /\ k e. A ) -> B e. CC ) |
| 12 | simpr | |- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> N e. ( ZZ>= ` M ) ) |
|
| 13 | 1 11 12 | prodrblem | |- ( ( ( ph /\ N e. ( ZZ>= ` M ) ) /\ A C_ ( ZZ>= ` N ) ) -> ( seq M ( x. , F ) |` ( ZZ>= ` N ) ) = seq N ( x. , F ) ) |
| 14 | 6 13 | mpidan | |- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( seq M ( x. , F ) |` ( ZZ>= ` N ) ) = seq N ( x. , F ) ) |
| 15 | 14 | breq1d | |- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( ( seq M ( x. , F ) |` ( ZZ>= ` N ) ) ~~> C <-> seq N ( x. , F ) ~~> C ) ) |
| 16 | 10 15 | bitr3d | |- ( ( ph /\ N e. ( ZZ>= ` M ) ) -> ( seq M ( x. , F ) ~~> C <-> seq N ( x. , F ) ~~> C ) ) |