This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law of well-founded recursion over a partial order, part one. Establish the functionality and domain of the recursive function generator. Note that by requiring a partial order we can avoid using the axiom of infinity. (Contributed by Scott Fenton, 11-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fprr.1 | |- F = frecs ( R , A , G ) |
|
| Assertion | fpr1 | |- ( ( R Fr A /\ R Po A /\ R Se A ) -> F Fn A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprr.1 | |- F = frecs ( R , A , G ) |
|
| 2 | eqid | |- { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
|
| 3 | 2 | frrlem1 | |- { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } = { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } |
| 4 | 3 1 | fprlem1 | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } /\ h e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) ) -> ( ( b g u /\ b h v ) -> u = v ) ) |
| 5 | 3 1 4 | frrlem9 | |- ( ( R Fr A /\ R Po A /\ R Se A ) -> Fun F ) |
| 6 | eqid | |- ( ( F |` Pred ( R , A , z ) ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) = ( ( F |` Pred ( R , A , z ) ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |
|
| 7 | simp1 | |- ( ( R Fr A /\ R Po A /\ R Se A ) -> R Fr A ) |
|
| 8 | ssidd | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) -> Pred ( R , A , z ) C_ Pred ( R , A , z ) ) |
|
| 9 | fprlem2 | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) -> A. y e. Pred ( R , A , z ) Pred ( R , A , y ) C_ Pred ( R , A , z ) ) |
|
| 10 | setlikespec | |- ( ( z e. A /\ R Se A ) -> Pred ( R , A , z ) e. _V ) |
|
| 11 | 10 | ancoms | |- ( ( R Se A /\ z e. A ) -> Pred ( R , A , z ) e. _V ) |
| 12 | 11 | 3ad2antl3 | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) -> Pred ( R , A , z ) e. _V ) |
| 13 | predss | |- Pred ( R , A , z ) C_ A |
|
| 14 | 13 | a1i | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) -> Pred ( R , A , z ) C_ A ) |
| 15 | difssd | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( A \ dom F ) =/= (/) ) -> ( A \ dom F ) C_ A ) |
|
| 16 | simpr | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( A \ dom F ) =/= (/) ) -> ( A \ dom F ) =/= (/) ) |
|
| 17 | 15 16 | jca | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( A \ dom F ) =/= (/) ) -> ( ( A \ dom F ) C_ A /\ ( A \ dom F ) =/= (/) ) ) |
| 18 | frpomin2 | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( ( A \ dom F ) C_ A /\ ( A \ dom F ) =/= (/) ) ) -> E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) |
|
| 19 | 17 18 | syldan | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( A \ dom F ) =/= (/) ) -> E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) |
| 20 | 3 1 4 6 7 8 9 12 14 19 | frrlem14 | |- ( ( R Fr A /\ R Po A /\ R Se A ) -> dom F = A ) |
| 21 | df-fn | |- ( F Fn A <-> ( Fun F /\ dom F = A ) ) |
|
| 22 | 5 20 21 | sylanbrc | |- ( ( R Fr A /\ R Po A /\ R Se A ) -> F Fn A ) |