This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Law of well-founded recursion over a partial order, part two. Now we establish the value of F within A . (Contributed by Scott Fenton, 11-Sep-2023) (Proof shortened by Scott Fenton, 18-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fprr.1 | |- F = frecs ( R , A , G ) |
|
| Assertion | fpr2 | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. A ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprr.1 | |- F = frecs ( R , A , G ) |
|
| 2 | 1 | fpr1 | |- ( ( R Fr A /\ R Po A /\ R Se A ) -> F Fn A ) |
| 3 | 2 | fndmd | |- ( ( R Fr A /\ R Po A /\ R Se A ) -> dom F = A ) |
| 4 | 3 | eleq2d | |- ( ( R Fr A /\ R Po A /\ R Se A ) -> ( X e. dom F <-> X e. A ) ) |
| 5 | 4 | biimpar | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. A ) -> X e. dom F ) |
| 6 | 1 | fpr2a | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) |
| 7 | 5 6 | syldan | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. A ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) ) |