This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for well-founded recursion with a partial order. Establish a subset relation. (Contributed by Scott Fenton, 11-Sep-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fprlem2 | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) -> A. w e. Pred ( R , A , z ) Pred ( R , A , w ) C_ Pred ( R , A , z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- w e. _V |
|
| 2 | 1 | elpred | |- ( z e. _V -> ( w e. Pred ( R , A , z ) <-> ( w e. A /\ w R z ) ) ) |
| 3 | 2 | elv | |- ( w e. Pred ( R , A , z ) <-> ( w e. A /\ w R z ) ) |
| 4 | simprl | |- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> x e. A ) |
|
| 5 | simpll2 | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) -> R Po A ) |
|
| 6 | 5 | adantr | |- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> R Po A ) |
| 7 | simprl | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) -> w e. A ) |
|
| 8 | 7 | adantr | |- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> w e. A ) |
| 9 | simpllr | |- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> z e. A ) |
|
| 10 | 4 8 9 | 3jca | |- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> ( x e. A /\ w e. A /\ z e. A ) ) |
| 11 | 6 10 | jca | |- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> ( R Po A /\ ( x e. A /\ w e. A /\ z e. A ) ) ) |
| 12 | simprr | |- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> x R w ) |
|
| 13 | simplrr | |- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> w R z ) |
|
| 14 | 12 13 | jca | |- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> ( x R w /\ w R z ) ) |
| 15 | potr | |- ( ( R Po A /\ ( x e. A /\ w e. A /\ z e. A ) ) -> ( ( x R w /\ w R z ) -> x R z ) ) |
|
| 16 | 11 14 15 | sylc | |- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> x R z ) |
| 17 | 4 16 | jca | |- ( ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) /\ ( x e. A /\ x R w ) ) -> ( x e. A /\ x R z ) ) |
| 18 | 17 | ex | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) -> ( ( x e. A /\ x R w ) -> ( x e. A /\ x R z ) ) ) |
| 19 | vex | |- x e. _V |
|
| 20 | 19 | elpred | |- ( w e. _V -> ( x e. Pred ( R , A , w ) <-> ( x e. A /\ x R w ) ) ) |
| 21 | 20 | elv | |- ( x e. Pred ( R , A , w ) <-> ( x e. A /\ x R w ) ) |
| 22 | 19 | elpred | |- ( z e. _V -> ( x e. Pred ( R , A , z ) <-> ( x e. A /\ x R z ) ) ) |
| 23 | 22 | elv | |- ( x e. Pred ( R , A , z ) <-> ( x e. A /\ x R z ) ) |
| 24 | 18 21 23 | 3imtr4g | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) -> ( x e. Pred ( R , A , w ) -> x e. Pred ( R , A , z ) ) ) |
| 25 | 24 | ssrdv | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ ( w e. A /\ w R z ) ) -> Pred ( R , A , w ) C_ Pred ( R , A , z ) ) |
| 26 | 3 25 | sylan2b | |- ( ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) /\ w e. Pred ( R , A , z ) ) -> Pred ( R , A , w ) C_ Pred ( R , A , z ) ) |
| 27 | 26 | ralrimiva | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) -> A. w e. Pred ( R , A , z ) Pred ( R , A , w ) C_ Pred ( R , A , z ) ) |