This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every nonempty (possibly proper) subclass of a class A with a well-founded set-like partial order R has a minimal element. The additional condition of partial order over frmin enables avoiding the axiom of infinity. (Contributed by Scott Fenton, 11-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | frpomin2 | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( B C_ A /\ B =/= (/) ) ) -> E. x e. B Pred ( R , B , x ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frpomin | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( B C_ A /\ B =/= (/) ) ) -> E. x e. B A. y e. B -. y R x ) |
|
| 2 | vex | |- x e. _V |
|
| 3 | 2 | dfpred3 | |- Pred ( R , B , x ) = { y e. B | y R x } |
| 4 | 3 | eqeq1i | |- ( Pred ( R , B , x ) = (/) <-> { y e. B | y R x } = (/) ) |
| 5 | rabeq0 | |- ( { y e. B | y R x } = (/) <-> A. y e. B -. y R x ) |
|
| 6 | 4 5 | bitri | |- ( Pred ( R , B , x ) = (/) <-> A. y e. B -. y R x ) |
| 7 | 6 | rexbii | |- ( E. x e. B Pred ( R , B , x ) = (/) <-> E. x e. B A. y e. B -. y R x ) |
| 8 | 1 7 | sylibr | |- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( B C_ A /\ B =/= (/) ) ) -> E. x e. B Pred ( R , B , x ) = (/) ) |