This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Formalized example provided in the comment for fpar . (Contributed by AV, 3-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ex-fpar.h | |- H = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( F o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( G o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
|
| ex-fpar.a | |- A = ( 0 [,) +oo ) |
||
| ex-fpar.b | |- B = RR |
||
| ex-fpar.f | |- F = ( sqrt |` A ) |
||
| ex-fpar.g | |- G = ( sin |` B ) |
||
| Assertion | ex-fpar | |- ( ( X e. A /\ Y e. B ) -> ( X ( + o. H ) Y ) = ( ( sqrt ` X ) + ( sin ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ex-fpar.h | |- H = ( ( `' ( 1st |` ( _V X. _V ) ) o. ( F o. ( 1st |` ( _V X. _V ) ) ) ) i^i ( `' ( 2nd |` ( _V X. _V ) ) o. ( G o. ( 2nd |` ( _V X. _V ) ) ) ) ) |
|
| 2 | ex-fpar.a | |- A = ( 0 [,) +oo ) |
|
| 3 | ex-fpar.b | |- B = RR |
|
| 4 | ex-fpar.f | |- F = ( sqrt |` A ) |
|
| 5 | ex-fpar.g | |- G = ( sin |` B ) |
|
| 6 | df-ov | |- ( X ( + o. H ) Y ) = ( ( + o. H ) ` <. X , Y >. ) |
|
| 7 | sqrtf | |- sqrt : CC --> CC |
|
| 8 | ffn | |- ( sqrt : CC --> CC -> sqrt Fn CC ) |
|
| 9 | 7 8 | ax-mp | |- sqrt Fn CC |
| 10 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 11 | ax-resscn | |- RR C_ CC |
|
| 12 | 10 11 | sstri | |- ( 0 [,) +oo ) C_ CC |
| 13 | fnssres | |- ( ( sqrt Fn CC /\ ( 0 [,) +oo ) C_ CC ) -> ( sqrt |` ( 0 [,) +oo ) ) Fn ( 0 [,) +oo ) ) |
|
| 14 | 2 | reseq2i | |- ( sqrt |` A ) = ( sqrt |` ( 0 [,) +oo ) ) |
| 15 | 14 | fneq1i | |- ( ( sqrt |` A ) Fn ( 0 [,) +oo ) <-> ( sqrt |` ( 0 [,) +oo ) ) Fn ( 0 [,) +oo ) ) |
| 16 | 13 15 | sylibr | |- ( ( sqrt Fn CC /\ ( 0 [,) +oo ) C_ CC ) -> ( sqrt |` A ) Fn ( 0 [,) +oo ) ) |
| 17 | 9 12 16 | mp2an | |- ( sqrt |` A ) Fn ( 0 [,) +oo ) |
| 18 | id | |- ( F = ( sqrt |` A ) -> F = ( sqrt |` A ) ) |
|
| 19 | 2 | a1i | |- ( F = ( sqrt |` A ) -> A = ( 0 [,) +oo ) ) |
| 20 | 18 19 | fneq12d | |- ( F = ( sqrt |` A ) -> ( F Fn A <-> ( sqrt |` A ) Fn ( 0 [,) +oo ) ) ) |
| 21 | 4 20 | ax-mp | |- ( F Fn A <-> ( sqrt |` A ) Fn ( 0 [,) +oo ) ) |
| 22 | 17 21 | mpbir | |- F Fn A |
| 23 | sinf | |- sin : CC --> CC |
|
| 24 | ffn | |- ( sin : CC --> CC -> sin Fn CC ) |
|
| 25 | 23 24 | ax-mp | |- sin Fn CC |
| 26 | fnssres | |- ( ( sin Fn CC /\ RR C_ CC ) -> ( sin |` RR ) Fn RR ) |
|
| 27 | 3 | reseq2i | |- ( sin |` B ) = ( sin |` RR ) |
| 28 | 27 | fneq1i | |- ( ( sin |` B ) Fn RR <-> ( sin |` RR ) Fn RR ) |
| 29 | 26 28 | sylibr | |- ( ( sin Fn CC /\ RR C_ CC ) -> ( sin |` B ) Fn RR ) |
| 30 | 25 11 29 | mp2an | |- ( sin |` B ) Fn RR |
| 31 | id | |- ( G = ( sin |` B ) -> G = ( sin |` B ) ) |
|
| 32 | 3 | a1i | |- ( G = ( sin |` B ) -> B = RR ) |
| 33 | 31 32 | fneq12d | |- ( G = ( sin |` B ) -> ( G Fn B <-> ( sin |` B ) Fn RR ) ) |
| 34 | 5 33 | ax-mp | |- ( G Fn B <-> ( sin |` B ) Fn RR ) |
| 35 | 30 34 | mpbir | |- G Fn B |
| 36 | 1 | fpar | |- ( ( F Fn A /\ G Fn B ) -> H = ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) ) |
| 37 | 22 35 36 | mp2an | |- H = ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) |
| 38 | opex | |- <. ( F ` x ) , ( G ` y ) >. e. _V |
|
| 39 | 37 38 | fnmpoi | |- H Fn ( A X. B ) |
| 40 | opelxpi | |- ( ( X e. A /\ Y e. B ) -> <. X , Y >. e. ( A X. B ) ) |
|
| 41 | fvco2 | |- ( ( H Fn ( A X. B ) /\ <. X , Y >. e. ( A X. B ) ) -> ( ( + o. H ) ` <. X , Y >. ) = ( + ` ( H ` <. X , Y >. ) ) ) |
|
| 42 | 39 40 41 | sylancr | |- ( ( X e. A /\ Y e. B ) -> ( ( + o. H ) ` <. X , Y >. ) = ( + ` ( H ` <. X , Y >. ) ) ) |
| 43 | simpl | |- ( ( X e. A /\ Y e. B ) -> X e. A ) |
|
| 44 | simpr | |- ( ( X e. A /\ Y e. B ) -> Y e. B ) |
|
| 45 | 37 43 44 | fvproj | |- ( ( X e. A /\ Y e. B ) -> ( H ` <. X , Y >. ) = <. ( F ` X ) , ( G ` Y ) >. ) |
| 46 | 45 | fveq2d | |- ( ( X e. A /\ Y e. B ) -> ( + ` ( H ` <. X , Y >. ) ) = ( + ` <. ( F ` X ) , ( G ` Y ) >. ) ) |
| 47 | df-ov | |- ( ( F ` X ) + ( G ` Y ) ) = ( + ` <. ( F ` X ) , ( G ` Y ) >. ) |
|
| 48 | 4 | fveq1i | |- ( F ` X ) = ( ( sqrt |` A ) ` X ) |
| 49 | fvres | |- ( X e. A -> ( ( sqrt |` A ) ` X ) = ( sqrt ` X ) ) |
|
| 50 | 48 49 | eqtrid | |- ( X e. A -> ( F ` X ) = ( sqrt ` X ) ) |
| 51 | 5 | fveq1i | |- ( G ` Y ) = ( ( sin |` B ) ` Y ) |
| 52 | fvres | |- ( Y e. B -> ( ( sin |` B ) ` Y ) = ( sin ` Y ) ) |
|
| 53 | 51 52 | eqtrid | |- ( Y e. B -> ( G ` Y ) = ( sin ` Y ) ) |
| 54 | 50 53 | oveqan12d | |- ( ( X e. A /\ Y e. B ) -> ( ( F ` X ) + ( G ` Y ) ) = ( ( sqrt ` X ) + ( sin ` Y ) ) ) |
| 55 | 47 54 | eqtr3id | |- ( ( X e. A /\ Y e. B ) -> ( + ` <. ( F ` X ) , ( G ` Y ) >. ) = ( ( sqrt ` X ) + ( sin ` Y ) ) ) |
| 56 | 42 46 55 | 3eqtrd | |- ( ( X e. A /\ Y e. B ) -> ( ( + o. H ) ` <. X , Y >. ) = ( ( sqrt ` X ) + ( sin ` Y ) ) ) |
| 57 | 6 56 | eqtrid | |- ( ( X e. A /\ Y e. B ) -> ( X ( + o. H ) Y ) = ( ( sqrt ` X ) + ( sin ` Y ) ) ) |