This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition for the maps-to notation df-mpo (although it requires that C be a set). (Contributed by NM, 19-Dec-2008) (Revised by Mario Carneiro, 31-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfmpo.1 | |- C e. _V |
|
| Assertion | dfmpo | |- ( x e. A , y e. B |-> C ) = U_ x e. A U_ y e. B { <. <. x , y >. , C >. } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfmpo.1 | |- C e. _V |
|
| 2 | mpompts | |- ( x e. A , y e. B |-> C ) = ( w e. ( A X. B ) |-> [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C ) |
|
| 3 | 1 | csbex | |- [_ ( 2nd ` w ) / y ]_ C e. _V |
| 4 | 3 | csbex | |- [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C e. _V |
| 5 | 4 | dfmpt | |- ( w e. ( A X. B ) |-> [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C ) = U_ w e. ( A X. B ) { <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. } |
| 6 | nfcv | |- F/_ x w |
|
| 7 | nfcsb1v | |- F/_ x [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C |
|
| 8 | 6 7 | nfop | |- F/_ x <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. |
| 9 | 8 | nfsn | |- F/_ x { <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. } |
| 10 | nfcv | |- F/_ y w |
|
| 11 | nfcv | |- F/_ y ( 1st ` w ) |
|
| 12 | nfcsb1v | |- F/_ y [_ ( 2nd ` w ) / y ]_ C |
|
| 13 | 11 12 | nfcsbw | |- F/_ y [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C |
| 14 | 10 13 | nfop | |- F/_ y <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. |
| 15 | 14 | nfsn | |- F/_ y { <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. } |
| 16 | nfcv | |- F/_ w { <. <. x , y >. , C >. } |
|
| 17 | id | |- ( w = <. x , y >. -> w = <. x , y >. ) |
|
| 18 | csbopeq1a | |- ( w = <. x , y >. -> [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C = C ) |
|
| 19 | 17 18 | opeq12d | |- ( w = <. x , y >. -> <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. = <. <. x , y >. , C >. ) |
| 20 | 19 | sneqd | |- ( w = <. x , y >. -> { <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. } = { <. <. x , y >. , C >. } ) |
| 21 | 9 15 16 20 | iunxpf | |- U_ w e. ( A X. B ) { <. w , [_ ( 1st ` w ) / x ]_ [_ ( 2nd ` w ) / y ]_ C >. } = U_ x e. A U_ y e. B { <. <. x , y >. , C >. } |
| 22 | 2 5 21 | 3eqtri | |- ( x e. A , y e. B |-> C ) = U_ x e. A U_ y e. B { <. <. x , y >. , C >. } |