This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fnwe2 . Substitution in well-ordering hypothesis. (Contributed by Stefan O'Rear, 19-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fnwe2.su | |- ( z = ( F ` x ) -> S = U ) |
|
| fnwe2.t | |- T = { <. x , y >. | ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x U y ) ) } |
||
| fnwe2.s | |- ( ( ph /\ x e. A ) -> U We { y e. A | ( F ` y ) = ( F ` x ) } ) |
||
| Assertion | fnwe2lem1 | |- ( ( ph /\ a e. A ) -> [_ ( F ` a ) / z ]_ S We { y e. A | ( F ` y ) = ( F ` a ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnwe2.su | |- ( z = ( F ` x ) -> S = U ) |
|
| 2 | fnwe2.t | |- T = { <. x , y >. | ( ( F ` x ) R ( F ` y ) \/ ( ( F ` x ) = ( F ` y ) /\ x U y ) ) } |
|
| 3 | fnwe2.s | |- ( ( ph /\ x e. A ) -> U We { y e. A | ( F ` y ) = ( F ` x ) } ) |
|
| 4 | 3 | ralrimiva | |- ( ph -> A. x e. A U We { y e. A | ( F ` y ) = ( F ` x ) } ) |
| 5 | fveq2 | |- ( a = x -> ( F ` a ) = ( F ` x ) ) |
|
| 6 | 5 | csbeq1d | |- ( a = x -> [_ ( F ` a ) / z ]_ S = [_ ( F ` x ) / z ]_ S ) |
| 7 | fvex | |- ( F ` x ) e. _V |
|
| 8 | 7 1 | csbie | |- [_ ( F ` x ) / z ]_ S = U |
| 9 | 6 8 | eqtrdi | |- ( a = x -> [_ ( F ` a ) / z ]_ S = U ) |
| 10 | 5 | eqeq2d | |- ( a = x -> ( ( F ` y ) = ( F ` a ) <-> ( F ` y ) = ( F ` x ) ) ) |
| 11 | 10 | rabbidv | |- ( a = x -> { y e. A | ( F ` y ) = ( F ` a ) } = { y e. A | ( F ` y ) = ( F ` x ) } ) |
| 12 | 9 11 | weeq12d | |- ( a = x -> ( [_ ( F ` a ) / z ]_ S We { y e. A | ( F ` y ) = ( F ` a ) } <-> U We { y e. A | ( F ` y ) = ( F ` x ) } ) ) |
| 13 | 12 | cbvralvw | |- ( A. a e. A [_ ( F ` a ) / z ]_ S We { y e. A | ( F ` y ) = ( F ` a ) } <-> A. x e. A U We { y e. A | ( F ` y ) = ( F ` x ) } ) |
| 14 | 4 13 | sylibr | |- ( ph -> A. a e. A [_ ( F ` a ) / z ]_ S We { y e. A | ( F ` y ) = ( F ` a ) } ) |
| 15 | 14 | r19.21bi | |- ( ( ph /\ a e. A ) -> [_ ( F ` a ) / z ]_ S We { y e. A | ( F ` y ) = ( F ` a ) } ) |