This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of a function on ordered pairs with values expressed as ordered pairs. Note that F and G are the projections of H to the first and second coordinate respectively. (Contributed by Thierry Arnoux, 30-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvproj.h | |- H = ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) |
|
| fvproj.x | |- ( ph -> X e. A ) |
||
| fvproj.y | |- ( ph -> Y e. B ) |
||
| Assertion | fvproj | |- ( ph -> ( H ` <. X , Y >. ) = <. ( F ` X ) , ( G ` Y ) >. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvproj.h | |- H = ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) |
|
| 2 | fvproj.x | |- ( ph -> X e. A ) |
|
| 3 | fvproj.y | |- ( ph -> Y e. B ) |
|
| 4 | df-ov | |- ( X H Y ) = ( H ` <. X , Y >. ) |
|
| 5 | fveq2 | |- ( a = X -> ( F ` a ) = ( F ` X ) ) |
|
| 6 | 5 | opeq1d | |- ( a = X -> <. ( F ` a ) , ( G ` b ) >. = <. ( F ` X ) , ( G ` b ) >. ) |
| 7 | fveq2 | |- ( b = Y -> ( G ` b ) = ( G ` Y ) ) |
|
| 8 | 7 | opeq2d | |- ( b = Y -> <. ( F ` X ) , ( G ` b ) >. = <. ( F ` X ) , ( G ` Y ) >. ) |
| 9 | fveq2 | |- ( x = a -> ( F ` x ) = ( F ` a ) ) |
|
| 10 | 9 | opeq1d | |- ( x = a -> <. ( F ` x ) , ( G ` y ) >. = <. ( F ` a ) , ( G ` y ) >. ) |
| 11 | fveq2 | |- ( y = b -> ( G ` y ) = ( G ` b ) ) |
|
| 12 | 11 | opeq2d | |- ( y = b -> <. ( F ` a ) , ( G ` y ) >. = <. ( F ` a ) , ( G ` b ) >. ) |
| 13 | 10 12 | cbvmpov | |- ( x e. A , y e. B |-> <. ( F ` x ) , ( G ` y ) >. ) = ( a e. A , b e. B |-> <. ( F ` a ) , ( G ` b ) >. ) |
| 14 | 1 13 | eqtri | |- H = ( a e. A , b e. B |-> <. ( F ` a ) , ( G ` b ) >. ) |
| 15 | opex | |- <. ( F ` X ) , ( G ` Y ) >. e. _V |
|
| 16 | 6 8 14 15 | ovmpo | |- ( ( X e. A /\ Y e. B ) -> ( X H Y ) = <. ( F ` X ) , ( G ` Y ) >. ) |
| 17 | 2 3 16 | syl2anc | |- ( ph -> ( X H Y ) = <. ( F ` X ) , ( G ` Y ) >. ) |
| 18 | 4 17 | eqtr3id | |- ( ph -> ( H ` <. X , Y >. ) = <. ( F ` X ) , ( G ` Y ) >. ) |