This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ratio of a number over a smaller positive number is larger than 1. (Contributed by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | divge1 | |- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> 1 <_ ( B / A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpgecl | |- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> B e. RR+ ) |
|
| 2 | rpcn | |- ( B e. RR+ -> B e. CC ) |
|
| 3 | rpne0 | |- ( B e. RR+ -> B =/= 0 ) |
|
| 4 | 2 3 | dividd | |- ( B e. RR+ -> ( B / B ) = 1 ) |
| 5 | 4 | eqcomd | |- ( B e. RR+ -> 1 = ( B / B ) ) |
| 6 | 1 5 | syl | |- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> 1 = ( B / B ) ) |
| 7 | simp3 | |- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> A <_ B ) |
|
| 8 | simp1 | |- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> A e. RR+ ) |
|
| 9 | 8 1 1 | lediv2d | |- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> ( A <_ B <-> ( B / B ) <_ ( B / A ) ) ) |
| 10 | 7 9 | mpbid | |- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> ( B / B ) <_ ( B / A ) ) |
| 11 | 6 10 | eqbrtrd | |- ( ( A e. RR+ /\ B e. RR /\ A <_ B ) -> 1 <_ ( B / A ) ) |