This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Addition to both sides of 'less than'. (Contributed by NM, 12-Nov-1999) (Revised by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltadd2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> ( C + A ) < ( C + B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axltadd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B -> ( C + A ) < ( C + B ) ) ) |
|
| 2 | oveq2 | |- ( A = B -> ( C + A ) = ( C + B ) ) |
|
| 3 | 2 | a1i | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A = B -> ( C + A ) = ( C + B ) ) ) |
| 4 | axltadd | |- ( ( B e. RR /\ A e. RR /\ C e. RR ) -> ( B < A -> ( C + B ) < ( C + A ) ) ) |
|
| 5 | 4 | 3com12 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B < A -> ( C + B ) < ( C + A ) ) ) |
| 6 | 3 5 | orim12d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A = B \/ B < A ) -> ( ( C + A ) = ( C + B ) \/ ( C + B ) < ( C + A ) ) ) ) |
| 7 | 6 | con3d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. ( ( C + A ) = ( C + B ) \/ ( C + B ) < ( C + A ) ) -> -. ( A = B \/ B < A ) ) ) |
| 8 | simp3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
|
| 9 | simp1 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
|
| 10 | 8 9 | readdcld | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + A ) e. RR ) |
| 11 | simp2 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
|
| 12 | 8 11 | readdcld | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C + B ) e. RR ) |
| 13 | axlttri | |- ( ( ( C + A ) e. RR /\ ( C + B ) e. RR ) -> ( ( C + A ) < ( C + B ) <-> -. ( ( C + A ) = ( C + B ) \/ ( C + B ) < ( C + A ) ) ) ) |
|
| 14 | 10 12 13 | syl2anc | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C + A ) < ( C + B ) <-> -. ( ( C + A ) = ( C + B ) \/ ( C + B ) < ( C + A ) ) ) ) |
| 15 | axlttri | |- ( ( A e. RR /\ B e. RR ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |
|
| 16 | 9 11 15 | syl2anc | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> -. ( A = B \/ B < A ) ) ) |
| 17 | 7 14 16 | 3imtr4d | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C + A ) < ( C + B ) -> A < B ) ) |
| 18 | 1 17 | impbid | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A < B <-> ( C + A ) < ( C + B ) ) ) |