This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor of a sum of an integer and a fraction is equal to the integer iff the denominator of the fraction is less than the numerator. (Contributed by AV, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | adddivflid | |- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN ) -> ( B < C <-> ( |_ ` ( A + ( B / C ) ) ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN ) -> A e. ZZ ) |
|
| 2 | nn0nndivcl | |- ( ( B e. NN0 /\ C e. NN ) -> ( B / C ) e. RR ) |
|
| 3 | 2 | 3adant1 | |- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN ) -> ( B / C ) e. RR ) |
| 4 | 1 3 | jca | |- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN ) -> ( A e. ZZ /\ ( B / C ) e. RR ) ) |
| 5 | flbi2 | |- ( ( A e. ZZ /\ ( B / C ) e. RR ) -> ( ( |_ ` ( A + ( B / C ) ) ) = A <-> ( 0 <_ ( B / C ) /\ ( B / C ) < 1 ) ) ) |
|
| 6 | 4 5 | syl | |- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN ) -> ( ( |_ ` ( A + ( B / C ) ) ) = A <-> ( 0 <_ ( B / C ) /\ ( B / C ) < 1 ) ) ) |
| 7 | nn0re | |- ( B e. NN0 -> B e. RR ) |
|
| 8 | nn0ge0 | |- ( B e. NN0 -> 0 <_ B ) |
|
| 9 | 7 8 | jca | |- ( B e. NN0 -> ( B e. RR /\ 0 <_ B ) ) |
| 10 | nnre | |- ( C e. NN -> C e. RR ) |
|
| 11 | nngt0 | |- ( C e. NN -> 0 < C ) |
|
| 12 | 10 11 | jca | |- ( C e. NN -> ( C e. RR /\ 0 < C ) ) |
| 13 | 9 12 | anim12i | |- ( ( B e. NN0 /\ C e. NN ) -> ( ( B e. RR /\ 0 <_ B ) /\ ( C e. RR /\ 0 < C ) ) ) |
| 14 | 13 | 3adant1 | |- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN ) -> ( ( B e. RR /\ 0 <_ B ) /\ ( C e. RR /\ 0 < C ) ) ) |
| 15 | divge0 | |- ( ( ( B e. RR /\ 0 <_ B ) /\ ( C e. RR /\ 0 < C ) ) -> 0 <_ ( B / C ) ) |
|
| 16 | 14 15 | syl | |- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN ) -> 0 <_ ( B / C ) ) |
| 17 | 16 | biantrurd | |- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN ) -> ( ( B / C ) < 1 <-> ( 0 <_ ( B / C ) /\ ( B / C ) < 1 ) ) ) |
| 18 | nnrp | |- ( C e. NN -> C e. RR+ ) |
|
| 19 | 7 18 | anim12i | |- ( ( B e. NN0 /\ C e. NN ) -> ( B e. RR /\ C e. RR+ ) ) |
| 20 | 19 | 3adant1 | |- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN ) -> ( B e. RR /\ C e. RR+ ) ) |
| 21 | divlt1lt | |- ( ( B e. RR /\ C e. RR+ ) -> ( ( B / C ) < 1 <-> B < C ) ) |
|
| 22 | 20 21 | syl | |- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN ) -> ( ( B / C ) < 1 <-> B < C ) ) |
| 23 | 6 17 22 | 3bitr2rd | |- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN ) -> ( B < C <-> ( |_ ` ( A + ( B / C ) ) ) = A ) ) |