This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of V-finite which emphasizes the idempotent behavior of V-infinite sets. (Contributed by Stefan O'Rear, 30-Oct-2014) (Revised by Mario Carneiro, 17-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isfin5-2 | |- ( A e. V -> ( A e. Fin5 <-> -. ( A =/= (/) /\ A ~~ ( A |_| A ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nne | |- ( -. A =/= (/) <-> A = (/) ) |
|
| 2 | 1 | bicomi | |- ( A = (/) <-> -. A =/= (/) ) |
| 3 | 2 | a1i | |- ( A e. V -> ( A = (/) <-> -. A =/= (/) ) ) |
| 4 | djudoml | |- ( ( A e. V /\ A e. V ) -> A ~<_ ( A |_| A ) ) |
|
| 5 | 4 | anidms | |- ( A e. V -> A ~<_ ( A |_| A ) ) |
| 6 | brsdom | |- ( A ~< ( A |_| A ) <-> ( A ~<_ ( A |_| A ) /\ -. A ~~ ( A |_| A ) ) ) |
|
| 7 | 6 | baib | |- ( A ~<_ ( A |_| A ) -> ( A ~< ( A |_| A ) <-> -. A ~~ ( A |_| A ) ) ) |
| 8 | 5 7 | syl | |- ( A e. V -> ( A ~< ( A |_| A ) <-> -. A ~~ ( A |_| A ) ) ) |
| 9 | 3 8 | orbi12d | |- ( A e. V -> ( ( A = (/) \/ A ~< ( A |_| A ) ) <-> ( -. A =/= (/) \/ -. A ~~ ( A |_| A ) ) ) ) |
| 10 | isfin5 | |- ( A e. Fin5 <-> ( A = (/) \/ A ~< ( A |_| A ) ) ) |
|
| 11 | ianor | |- ( -. ( A =/= (/) /\ A ~~ ( A |_| A ) ) <-> ( -. A =/= (/) \/ -. A ~~ ( A |_| A ) ) ) |
|
| 12 | 9 10 11 | 3bitr4g | |- ( A e. V -> ( A e. Fin5 <-> -. ( A =/= (/) /\ A ~~ ( A |_| A ) ) ) ) |