This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The range of a single-step monotone function from _om into a partially ordered set is a chain. (Contributed by Stefan O'Rear, 3-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sornom | |- ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> R Or ran F ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | |- ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> R Po ran F ) |
|
| 2 | fvelrnb | |- ( F Fn _om -> ( b e. ran F <-> E. d e. _om ( F ` d ) = b ) ) |
|
| 3 | fvelrnb | |- ( F Fn _om -> ( c e. ran F <-> E. e e. _om ( F ` e ) = c ) ) |
|
| 4 | 2 3 | anbi12d | |- ( F Fn _om -> ( ( b e. ran F /\ c e. ran F ) <-> ( E. d e. _om ( F ` d ) = b /\ E. e e. _om ( F ` e ) = c ) ) ) |
| 5 | 4 | 3ad2ant1 | |- ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( b e. ran F /\ c e. ran F ) <-> ( E. d e. _om ( F ` d ) = b /\ E. e e. _om ( F ` e ) = c ) ) ) |
| 6 | reeanv | |- ( E. d e. _om E. e e. _om ( ( F ` d ) = b /\ ( F ` e ) = c ) <-> ( E. d e. _om ( F ` d ) = b /\ E. e e. _om ( F ` e ) = c ) ) |
|
| 7 | nnord | |- ( d e. _om -> Ord d ) |
|
| 8 | nnord | |- ( e e. _om -> Ord e ) |
|
| 9 | ordtri2or2 | |- ( ( Ord d /\ Ord e ) -> ( d C_ e \/ e C_ d ) ) |
|
| 10 | 7 8 9 | syl2an | |- ( ( d e. _om /\ e e. _om ) -> ( d C_ e \/ e C_ d ) ) |
| 11 | 10 | adantl | |- ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( d e. _om /\ e e. _om ) ) -> ( d C_ e \/ e C_ d ) ) |
| 12 | vex | |- d e. _V |
|
| 13 | vex | |- e e. _V |
|
| 14 | eleq1w | |- ( b = d -> ( b e. _om <-> d e. _om ) ) |
|
| 15 | eleq1w | |- ( c = e -> ( c e. _om <-> e e. _om ) ) |
|
| 16 | 14 15 | bi2anan9 | |- ( ( b = d /\ c = e ) -> ( ( b e. _om /\ c e. _om ) <-> ( d e. _om /\ e e. _om ) ) ) |
| 17 | 16 | anbi2d | |- ( ( b = d /\ c = e ) -> ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( b e. _om /\ c e. _om ) ) <-> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( d e. _om /\ e e. _om ) ) ) ) |
| 18 | sseq12 | |- ( ( b = d /\ c = e ) -> ( b C_ c <-> d C_ e ) ) |
|
| 19 | fveq2 | |- ( b = d -> ( F ` b ) = ( F ` d ) ) |
|
| 20 | fveq2 | |- ( c = e -> ( F ` c ) = ( F ` e ) ) |
|
| 21 | 19 20 | breqan12d | |- ( ( b = d /\ c = e ) -> ( ( F ` b ) R ( F ` c ) <-> ( F ` d ) R ( F ` e ) ) ) |
| 22 | 19 20 | eqeqan12d | |- ( ( b = d /\ c = e ) -> ( ( F ` b ) = ( F ` c ) <-> ( F ` d ) = ( F ` e ) ) ) |
| 23 | 21 22 | orbi12d | |- ( ( b = d /\ c = e ) -> ( ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) <-> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) ) ) ) |
| 24 | 18 23 | imbi12d | |- ( ( b = d /\ c = e ) -> ( ( b C_ c -> ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) ) <-> ( d C_ e -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) ) ) ) ) |
| 25 | 17 24 | imbi12d | |- ( ( b = d /\ c = e ) -> ( ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( b e. _om /\ c e. _om ) ) -> ( b C_ c -> ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) ) ) <-> ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( d e. _om /\ e e. _om ) ) -> ( d C_ e -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) ) ) ) ) ) |
| 26 | fveq2 | |- ( d = b -> ( F ` d ) = ( F ` b ) ) |
|
| 27 | 26 | breq2d | |- ( d = b -> ( ( F ` b ) R ( F ` d ) <-> ( F ` b ) R ( F ` b ) ) ) |
| 28 | 26 | eqeq2d | |- ( d = b -> ( ( F ` b ) = ( F ` d ) <-> ( F ` b ) = ( F ` b ) ) ) |
| 29 | 27 28 | orbi12d | |- ( d = b -> ( ( ( F ` b ) R ( F ` d ) \/ ( F ` b ) = ( F ` d ) ) <-> ( ( F ` b ) R ( F ` b ) \/ ( F ` b ) = ( F ` b ) ) ) ) |
| 30 | 29 | imbi2d | |- ( d = b -> ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` d ) \/ ( F ` b ) = ( F ` d ) ) ) <-> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` b ) \/ ( F ` b ) = ( F ` b ) ) ) ) ) |
| 31 | fveq2 | |- ( d = e -> ( F ` d ) = ( F ` e ) ) |
|
| 32 | 31 | breq2d | |- ( d = e -> ( ( F ` b ) R ( F ` d ) <-> ( F ` b ) R ( F ` e ) ) ) |
| 33 | 31 | eqeq2d | |- ( d = e -> ( ( F ` b ) = ( F ` d ) <-> ( F ` b ) = ( F ` e ) ) ) |
| 34 | 32 33 | orbi12d | |- ( d = e -> ( ( ( F ` b ) R ( F ` d ) \/ ( F ` b ) = ( F ` d ) ) <-> ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) ) ) |
| 35 | 34 | imbi2d | |- ( d = e -> ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` d ) \/ ( F ` b ) = ( F ` d ) ) ) <-> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) ) ) ) |
| 36 | fveq2 | |- ( d = suc e -> ( F ` d ) = ( F ` suc e ) ) |
|
| 37 | 36 | breq2d | |- ( d = suc e -> ( ( F ` b ) R ( F ` d ) <-> ( F ` b ) R ( F ` suc e ) ) ) |
| 38 | 36 | eqeq2d | |- ( d = suc e -> ( ( F ` b ) = ( F ` d ) <-> ( F ` b ) = ( F ` suc e ) ) ) |
| 39 | 37 38 | orbi12d | |- ( d = suc e -> ( ( ( F ` b ) R ( F ` d ) \/ ( F ` b ) = ( F ` d ) ) <-> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) |
| 40 | 39 | imbi2d | |- ( d = suc e -> ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` d ) \/ ( F ` b ) = ( F ` d ) ) ) <-> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) ) |
| 41 | fveq2 | |- ( d = c -> ( F ` d ) = ( F ` c ) ) |
|
| 42 | 41 | breq2d | |- ( d = c -> ( ( F ` b ) R ( F ` d ) <-> ( F ` b ) R ( F ` c ) ) ) |
| 43 | 41 | eqeq2d | |- ( d = c -> ( ( F ` b ) = ( F ` d ) <-> ( F ` b ) = ( F ` c ) ) ) |
| 44 | 42 43 | orbi12d | |- ( d = c -> ( ( ( F ` b ) R ( F ` d ) \/ ( F ` b ) = ( F ` d ) ) <-> ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) ) ) |
| 45 | 44 | imbi2d | |- ( d = c -> ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` d ) \/ ( F ` b ) = ( F ` d ) ) ) <-> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) ) ) ) |
| 46 | eqid | |- ( F ` b ) = ( F ` b ) |
|
| 47 | 46 | olci | |- ( ( F ` b ) R ( F ` b ) \/ ( F ` b ) = ( F ` b ) ) |
| 48 | 47 | 2a1i | |- ( b e. _om -> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` b ) \/ ( F ` b ) = ( F ` b ) ) ) ) |
| 49 | fveq2 | |- ( a = e -> ( F ` a ) = ( F ` e ) ) |
|
| 50 | suceq | |- ( a = e -> suc a = suc e ) |
|
| 51 | 50 | fveq2d | |- ( a = e -> ( F ` suc a ) = ( F ` suc e ) ) |
| 52 | 49 51 | breq12d | |- ( a = e -> ( ( F ` a ) R ( F ` suc a ) <-> ( F ` e ) R ( F ` suc e ) ) ) |
| 53 | 49 51 | eqeq12d | |- ( a = e -> ( ( F ` a ) = ( F ` suc a ) <-> ( F ` e ) = ( F ` suc e ) ) ) |
| 54 | 52 53 | orbi12d | |- ( a = e -> ( ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) <-> ( ( F ` e ) R ( F ` suc e ) \/ ( F ` e ) = ( F ` suc e ) ) ) ) |
| 55 | simpr2 | |- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) ) -> A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) ) |
|
| 56 | simplll | |- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) ) -> e e. _om ) |
|
| 57 | 54 55 56 | rspcdva | |- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) ) -> ( ( F ` e ) R ( F ` suc e ) \/ ( F ` e ) = ( F ` suc e ) ) ) |
| 58 | simprr | |- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> R Po ran F ) |
|
| 59 | simprl | |- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> F Fn _om ) |
|
| 60 | simpllr | |- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> b e. _om ) |
|
| 61 | fnfvelrn | |- ( ( F Fn _om /\ b e. _om ) -> ( F ` b ) e. ran F ) |
|
| 62 | 59 60 61 | syl2anc | |- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> ( F ` b ) e. ran F ) |
| 63 | simplll | |- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> e e. _om ) |
|
| 64 | fnfvelrn | |- ( ( F Fn _om /\ e e. _om ) -> ( F ` e ) e. ran F ) |
|
| 65 | 59 63 64 | syl2anc | |- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> ( F ` e ) e. ran F ) |
| 66 | peano2 | |- ( e e. _om -> suc e e. _om ) |
|
| 67 | 66 | ad3antrrr | |- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> suc e e. _om ) |
| 68 | fnfvelrn | |- ( ( F Fn _om /\ suc e e. _om ) -> ( F ` suc e ) e. ran F ) |
|
| 69 | 59 67 68 | syl2anc | |- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> ( F ` suc e ) e. ran F ) |
| 70 | potr | |- ( ( R Po ran F /\ ( ( F ` b ) e. ran F /\ ( F ` e ) e. ran F /\ ( F ` suc e ) e. ran F ) ) -> ( ( ( F ` b ) R ( F ` e ) /\ ( F ` e ) R ( F ` suc e ) ) -> ( F ` b ) R ( F ` suc e ) ) ) |
|
| 71 | 58 62 65 69 70 | syl13anc | |- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> ( ( ( F ` b ) R ( F ` e ) /\ ( F ` e ) R ( F ` suc e ) ) -> ( F ` b ) R ( F ` suc e ) ) ) |
| 72 | 71 | imp | |- ( ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) /\ ( ( F ` b ) R ( F ` e ) /\ ( F ` e ) R ( F ` suc e ) ) ) -> ( F ` b ) R ( F ` suc e ) ) |
| 73 | 72 | ancom2s | |- ( ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) /\ ( ( F ` e ) R ( F ` suc e ) /\ ( F ` b ) R ( F ` e ) ) ) -> ( F ` b ) R ( F ` suc e ) ) |
| 74 | 73 | orcd | |- ( ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) /\ ( ( F ` e ) R ( F ` suc e ) /\ ( F ` b ) R ( F ` e ) ) ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) |
| 75 | 74 | expr | |- ( ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) /\ ( F ` e ) R ( F ` suc e ) ) -> ( ( F ` b ) R ( F ` e ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) |
| 76 | breq1 | |- ( ( F ` b ) = ( F ` e ) -> ( ( F ` b ) R ( F ` suc e ) <-> ( F ` e ) R ( F ` suc e ) ) ) |
|
| 77 | 76 | biimprcd | |- ( ( F ` e ) R ( F ` suc e ) -> ( ( F ` b ) = ( F ` e ) -> ( F ` b ) R ( F ` suc e ) ) ) |
| 78 | orc | |- ( ( F ` b ) R ( F ` suc e ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) |
|
| 79 | 77 78 | syl6 | |- ( ( F ` e ) R ( F ` suc e ) -> ( ( F ` b ) = ( F ` e ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) |
| 80 | 79 | adantl | |- ( ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) /\ ( F ` e ) R ( F ` suc e ) ) -> ( ( F ` b ) = ( F ` e ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) |
| 81 | 75 80 | jaod | |- ( ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) /\ ( F ` e ) R ( F ` suc e ) ) -> ( ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) |
| 82 | 81 | ex | |- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> ( ( F ` e ) R ( F ` suc e ) -> ( ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) ) |
| 83 | breq2 | |- ( ( F ` e ) = ( F ` suc e ) -> ( ( F ` b ) R ( F ` e ) <-> ( F ` b ) R ( F ` suc e ) ) ) |
|
| 84 | eqeq2 | |- ( ( F ` e ) = ( F ` suc e ) -> ( ( F ` b ) = ( F ` e ) <-> ( F ` b ) = ( F ` suc e ) ) ) |
|
| 85 | 83 84 | orbi12d | |- ( ( F ` e ) = ( F ` suc e ) -> ( ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) <-> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) |
| 86 | 85 | biimpd | |- ( ( F ` e ) = ( F ` suc e ) -> ( ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) |
| 87 | 86 | a1i | |- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> ( ( F ` e ) = ( F ` suc e ) -> ( ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) ) |
| 88 | 82 87 | jaod | |- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ R Po ran F ) ) -> ( ( ( F ` e ) R ( F ` suc e ) \/ ( F ` e ) = ( F ` suc e ) ) -> ( ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) ) |
| 89 | 88 | 3adantr2 | |- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) ) -> ( ( ( F ` e ) R ( F ` suc e ) \/ ( F ` e ) = ( F ` suc e ) ) -> ( ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) ) |
| 90 | 57 89 | mpd | |- ( ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) /\ ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) ) -> ( ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) |
| 91 | 90 | ex | |- ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) -> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) ) |
| 92 | 91 | a2d | |- ( ( ( e e. _om /\ b e. _om ) /\ b C_ e ) -> ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` e ) \/ ( F ` b ) = ( F ` e ) ) ) -> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` suc e ) \/ ( F ` b ) = ( F ` suc e ) ) ) ) ) |
| 93 | 30 35 40 45 48 92 | findsg | |- ( ( ( c e. _om /\ b e. _om ) /\ b C_ c ) -> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) ) ) |
| 94 | 93 | ancom1s | |- ( ( ( b e. _om /\ c e. _om ) /\ b C_ c ) -> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) ) ) |
| 95 | 94 | impcom | |- ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( ( b e. _om /\ c e. _om ) /\ b C_ c ) ) -> ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) ) |
| 96 | 95 | expr | |- ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( b e. _om /\ c e. _om ) ) -> ( b C_ c -> ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) ) ) |
| 97 | 12 13 25 96 | vtocl2 | |- ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( d e. _om /\ e e. _om ) ) -> ( d C_ e -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) ) ) ) |
| 98 | eleq1w | |- ( b = e -> ( b e. _om <-> e e. _om ) ) |
|
| 99 | eleq1w | |- ( c = d -> ( c e. _om <-> d e. _om ) ) |
|
| 100 | 98 99 | bi2anan9 | |- ( ( b = e /\ c = d ) -> ( ( b e. _om /\ c e. _om ) <-> ( e e. _om /\ d e. _om ) ) ) |
| 101 | 100 | anbi2d | |- ( ( b = e /\ c = d ) -> ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( b e. _om /\ c e. _om ) ) <-> ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( e e. _om /\ d e. _om ) ) ) ) |
| 102 | sseq12 | |- ( ( b = e /\ c = d ) -> ( b C_ c <-> e C_ d ) ) |
|
| 103 | fveq2 | |- ( b = e -> ( F ` b ) = ( F ` e ) ) |
|
| 104 | fveq2 | |- ( c = d -> ( F ` c ) = ( F ` d ) ) |
|
| 105 | 103 104 | breqan12d | |- ( ( b = e /\ c = d ) -> ( ( F ` b ) R ( F ` c ) <-> ( F ` e ) R ( F ` d ) ) ) |
| 106 | 103 104 | eqeqan12d | |- ( ( b = e /\ c = d ) -> ( ( F ` b ) = ( F ` c ) <-> ( F ` e ) = ( F ` d ) ) ) |
| 107 | 105 106 | orbi12d | |- ( ( b = e /\ c = d ) -> ( ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) <-> ( ( F ` e ) R ( F ` d ) \/ ( F ` e ) = ( F ` d ) ) ) ) |
| 108 | 102 107 | imbi12d | |- ( ( b = e /\ c = d ) -> ( ( b C_ c -> ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) ) <-> ( e C_ d -> ( ( F ` e ) R ( F ` d ) \/ ( F ` e ) = ( F ` d ) ) ) ) ) |
| 109 | 101 108 | imbi12d | |- ( ( b = e /\ c = d ) -> ( ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( b e. _om /\ c e. _om ) ) -> ( b C_ c -> ( ( F ` b ) R ( F ` c ) \/ ( F ` b ) = ( F ` c ) ) ) ) <-> ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( e e. _om /\ d e. _om ) ) -> ( e C_ d -> ( ( F ` e ) R ( F ` d ) \/ ( F ` e ) = ( F ` d ) ) ) ) ) ) |
| 110 | 13 12 109 96 | vtocl2 | |- ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( e e. _om /\ d e. _om ) ) -> ( e C_ d -> ( ( F ` e ) R ( F ` d ) \/ ( F ` e ) = ( F ` d ) ) ) ) |
| 111 | 110 | ancom2s | |- ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( d e. _om /\ e e. _om ) ) -> ( e C_ d -> ( ( F ` e ) R ( F ` d ) \/ ( F ` e ) = ( F ` d ) ) ) ) |
| 112 | 97 111 | orim12d | |- ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( d e. _om /\ e e. _om ) ) -> ( ( d C_ e \/ e C_ d ) -> ( ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) ) \/ ( ( F ` e ) R ( F ` d ) \/ ( F ` e ) = ( F ` d ) ) ) ) ) |
| 113 | 11 112 | mpd | |- ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( d e. _om /\ e e. _om ) ) -> ( ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) ) \/ ( ( F ` e ) R ( F ` d ) \/ ( F ` e ) = ( F ` d ) ) ) ) |
| 114 | 3mix1 | |- ( ( F ` d ) R ( F ` e ) -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) \/ ( F ` e ) R ( F ` d ) ) ) |
|
| 115 | 3mix2 | |- ( ( F ` d ) = ( F ` e ) -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) \/ ( F ` e ) R ( F ` d ) ) ) |
|
| 116 | 114 115 | jaoi | |- ( ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) ) -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) \/ ( F ` e ) R ( F ` d ) ) ) |
| 117 | 3mix3 | |- ( ( F ` e ) R ( F ` d ) -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) \/ ( F ` e ) R ( F ` d ) ) ) |
|
| 118 | 115 | eqcoms | |- ( ( F ` e ) = ( F ` d ) -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) \/ ( F ` e ) R ( F ` d ) ) ) |
| 119 | 117 118 | jaoi | |- ( ( ( F ` e ) R ( F ` d ) \/ ( F ` e ) = ( F ` d ) ) -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) \/ ( F ` e ) R ( F ` d ) ) ) |
| 120 | 116 119 | jaoi | |- ( ( ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) ) \/ ( ( F ` e ) R ( F ` d ) \/ ( F ` e ) = ( F ` d ) ) ) -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) \/ ( F ` e ) R ( F ` d ) ) ) |
| 121 | 113 120 | syl | |- ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( d e. _om /\ e e. _om ) ) -> ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) \/ ( F ` e ) R ( F ` d ) ) ) |
| 122 | breq12 | |- ( ( ( F ` d ) = b /\ ( F ` e ) = c ) -> ( ( F ` d ) R ( F ` e ) <-> b R c ) ) |
|
| 123 | eqeq12 | |- ( ( ( F ` d ) = b /\ ( F ` e ) = c ) -> ( ( F ` d ) = ( F ` e ) <-> b = c ) ) |
|
| 124 | breq12 | |- ( ( ( F ` e ) = c /\ ( F ` d ) = b ) -> ( ( F ` e ) R ( F ` d ) <-> c R b ) ) |
|
| 125 | 124 | ancoms | |- ( ( ( F ` d ) = b /\ ( F ` e ) = c ) -> ( ( F ` e ) R ( F ` d ) <-> c R b ) ) |
| 126 | 122 123 125 | 3orbi123d | |- ( ( ( F ` d ) = b /\ ( F ` e ) = c ) -> ( ( ( F ` d ) R ( F ` e ) \/ ( F ` d ) = ( F ` e ) \/ ( F ` e ) R ( F ` d ) ) <-> ( b R c \/ b = c \/ c R b ) ) ) |
| 127 | 121 126 | syl5ibcom | |- ( ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) /\ ( d e. _om /\ e e. _om ) ) -> ( ( ( F ` d ) = b /\ ( F ` e ) = c ) -> ( b R c \/ b = c \/ c R b ) ) ) |
| 128 | 127 | rexlimdvva | |- ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( E. d e. _om E. e e. _om ( ( F ` d ) = b /\ ( F ` e ) = c ) -> ( b R c \/ b = c \/ c R b ) ) ) |
| 129 | 6 128 | biimtrrid | |- ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( E. d e. _om ( F ` d ) = b /\ E. e e. _om ( F ` e ) = c ) -> ( b R c \/ b = c \/ c R b ) ) ) |
| 130 | 5 129 | sylbid | |- ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> ( ( b e. ran F /\ c e. ran F ) -> ( b R c \/ b = c \/ c R b ) ) ) |
| 131 | 130 | ralrimivv | |- ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> A. b e. ran F A. c e. ran F ( b R c \/ b = c \/ c R b ) ) |
| 132 | df-so | |- ( R Or ran F <-> ( R Po ran F /\ A. b e. ran F A. c e. ran F ( b R c \/ b = c \/ c R b ) ) ) |
|
| 133 | 1 131 132 | sylanbrc | |- ( ( F Fn _om /\ A. a e. _om ( ( F ` a ) R ( F ` suc a ) \/ ( F ` a ) = ( F ` suc a ) ) /\ R Po ran F ) -> R Or ran F ) |