This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . The first set in U to see an input set is either contained in it or disjoint from it. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| Assertion | fin23lem19 | |- ( A e. _om -> ( ( U ` suc A ) C_ ( t ` A ) \/ ( ( U ` suc A ) i^i ( t ` A ) ) = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| 2 | 1 | fin23lem12 | |- ( A e. _om -> ( U ` suc A ) = if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) ) |
| 3 | eqif | |- ( ( U ` suc A ) = if ( ( ( t ` A ) i^i ( U ` A ) ) = (/) , ( U ` A ) , ( ( t ` A ) i^i ( U ` A ) ) ) <-> ( ( ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( U ` A ) ) \/ ( -. ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( ( t ` A ) i^i ( U ` A ) ) ) ) ) |
|
| 4 | 2 3 | sylib | |- ( A e. _om -> ( ( ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( U ` A ) ) \/ ( -. ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( ( t ` A ) i^i ( U ` A ) ) ) ) ) |
| 5 | incom | |- ( ( U ` suc A ) i^i ( t ` A ) ) = ( ( t ` A ) i^i ( U ` suc A ) ) |
|
| 6 | ineq2 | |- ( ( U ` suc A ) = ( U ` A ) -> ( ( t ` A ) i^i ( U ` suc A ) ) = ( ( t ` A ) i^i ( U ` A ) ) ) |
|
| 7 | 6 | eqeq1d | |- ( ( U ` suc A ) = ( U ` A ) -> ( ( ( t ` A ) i^i ( U ` suc A ) ) = (/) <-> ( ( t ` A ) i^i ( U ` A ) ) = (/) ) ) |
| 8 | 7 | biimparc | |- ( ( ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( U ` A ) ) -> ( ( t ` A ) i^i ( U ` suc A ) ) = (/) ) |
| 9 | 5 8 | eqtrid | |- ( ( ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( U ` A ) ) -> ( ( U ` suc A ) i^i ( t ` A ) ) = (/) ) |
| 10 | inss1 | |- ( ( t ` A ) i^i ( U ` A ) ) C_ ( t ` A ) |
|
| 11 | sseq1 | |- ( ( U ` suc A ) = ( ( t ` A ) i^i ( U ` A ) ) -> ( ( U ` suc A ) C_ ( t ` A ) <-> ( ( t ` A ) i^i ( U ` A ) ) C_ ( t ` A ) ) ) |
|
| 12 | 10 11 | mpbiri | |- ( ( U ` suc A ) = ( ( t ` A ) i^i ( U ` A ) ) -> ( U ` suc A ) C_ ( t ` A ) ) |
| 13 | 12 | adantl | |- ( ( -. ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( ( t ` A ) i^i ( U ` A ) ) ) -> ( U ` suc A ) C_ ( t ` A ) ) |
| 14 | 9 13 | orim12i | |- ( ( ( ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( U ` A ) ) \/ ( -. ( ( t ` A ) i^i ( U ` A ) ) = (/) /\ ( U ` suc A ) = ( ( t ` A ) i^i ( U ` A ) ) ) ) -> ( ( ( U ` suc A ) i^i ( t ` A ) ) = (/) \/ ( U ` suc A ) C_ ( t ` A ) ) ) |
| 15 | 4 14 | syl | |- ( A e. _om -> ( ( ( U ` suc A ) i^i ( t ` A ) ) = (/) \/ ( U ` suc A ) C_ ( t ` A ) ) ) |
| 16 | 15 | orcomd | |- ( A e. _om -> ( ( U ` suc A ) C_ ( t ` A ) \/ ( ( U ` suc A ) i^i ( t ` A ) ) = (/) ) ) |