This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fin23 . U is a monotone function. (Contributed by Stefan O'Rear, 1-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| Assertion | fin23lem15 | |- ( ( ( A e. _om /\ B e. _om ) /\ B C_ A ) -> ( U ` A ) C_ ( U ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fin23lem.a | |- U = seqom ( ( i e. _om , u e. _V |-> if ( ( ( t ` i ) i^i u ) = (/) , u , ( ( t ` i ) i^i u ) ) ) , U. ran t ) |
|
| 2 | fveq2 | |- ( b = B -> ( U ` b ) = ( U ` B ) ) |
|
| 3 | 2 | sseq1d | |- ( b = B -> ( ( U ` b ) C_ ( U ` B ) <-> ( U ` B ) C_ ( U ` B ) ) ) |
| 4 | fveq2 | |- ( b = a -> ( U ` b ) = ( U ` a ) ) |
|
| 5 | 4 | sseq1d | |- ( b = a -> ( ( U ` b ) C_ ( U ` B ) <-> ( U ` a ) C_ ( U ` B ) ) ) |
| 6 | fveq2 | |- ( b = suc a -> ( U ` b ) = ( U ` suc a ) ) |
|
| 7 | 6 | sseq1d | |- ( b = suc a -> ( ( U ` b ) C_ ( U ` B ) <-> ( U ` suc a ) C_ ( U ` B ) ) ) |
| 8 | fveq2 | |- ( b = A -> ( U ` b ) = ( U ` A ) ) |
|
| 9 | 8 | sseq1d | |- ( b = A -> ( ( U ` b ) C_ ( U ` B ) <-> ( U ` A ) C_ ( U ` B ) ) ) |
| 10 | ssidd | |- ( B e. _om -> ( U ` B ) C_ ( U ` B ) ) |
|
| 11 | 1 | fin23lem13 | |- ( a e. _om -> ( U ` suc a ) C_ ( U ` a ) ) |
| 12 | 11 | ad2antrr | |- ( ( ( a e. _om /\ B e. _om ) /\ B C_ a ) -> ( U ` suc a ) C_ ( U ` a ) ) |
| 13 | sstr2 | |- ( ( U ` suc a ) C_ ( U ` a ) -> ( ( U ` a ) C_ ( U ` B ) -> ( U ` suc a ) C_ ( U ` B ) ) ) |
|
| 14 | 12 13 | syl | |- ( ( ( a e. _om /\ B e. _om ) /\ B C_ a ) -> ( ( U ` a ) C_ ( U ` B ) -> ( U ` suc a ) C_ ( U ` B ) ) ) |
| 15 | 3 5 7 9 10 14 | findsg | |- ( ( ( A e. _om /\ B e. _om ) /\ B C_ A ) -> ( U ` A ) C_ ( U ` B ) ) |