This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a compact topology, a system of closed sets with nonempty finite intersections has a nonempty intersection. (Contributed by Stefan O'Rear, 22-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cmpfii | |- ( ( J e. Comp /\ X C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` X ) ) -> |^| X =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex | |- ( Clsd ` J ) e. _V |
|
| 2 | 1 | elpw2 | |- ( X e. ~P ( Clsd ` J ) <-> X C_ ( Clsd ` J ) ) |
| 3 | 2 | biimpri | |- ( X C_ ( Clsd ` J ) -> X e. ~P ( Clsd ` J ) ) |
| 4 | cmptop | |- ( J e. Comp -> J e. Top ) |
|
| 5 | cmpfi | |- ( J e. Top -> ( J e. Comp <-> A. x e. ~P ( Clsd ` J ) ( -. (/) e. ( fi ` x ) -> |^| x =/= (/) ) ) ) |
|
| 6 | 4 5 | syl | |- ( J e. Comp -> ( J e. Comp <-> A. x e. ~P ( Clsd ` J ) ( -. (/) e. ( fi ` x ) -> |^| x =/= (/) ) ) ) |
| 7 | 6 | ibi | |- ( J e. Comp -> A. x e. ~P ( Clsd ` J ) ( -. (/) e. ( fi ` x ) -> |^| x =/= (/) ) ) |
| 8 | fveq2 | |- ( x = X -> ( fi ` x ) = ( fi ` X ) ) |
|
| 9 | 8 | eleq2d | |- ( x = X -> ( (/) e. ( fi ` x ) <-> (/) e. ( fi ` X ) ) ) |
| 10 | 9 | notbid | |- ( x = X -> ( -. (/) e. ( fi ` x ) <-> -. (/) e. ( fi ` X ) ) ) |
| 11 | inteq | |- ( x = X -> |^| x = |^| X ) |
|
| 12 | 11 | neeq1d | |- ( x = X -> ( |^| x =/= (/) <-> |^| X =/= (/) ) ) |
| 13 | 10 12 | imbi12d | |- ( x = X -> ( ( -. (/) e. ( fi ` x ) -> |^| x =/= (/) ) <-> ( -. (/) e. ( fi ` X ) -> |^| X =/= (/) ) ) ) |
| 14 | 13 | rspcva | |- ( ( X e. ~P ( Clsd ` J ) /\ A. x e. ~P ( Clsd ` J ) ( -. (/) e. ( fi ` x ) -> |^| x =/= (/) ) ) -> ( -. (/) e. ( fi ` X ) -> |^| X =/= (/) ) ) |
| 15 | 3 7 14 | syl2anr | |- ( ( J e. Comp /\ X C_ ( Clsd ` J ) ) -> ( -. (/) e. ( fi ` X ) -> |^| X =/= (/) ) ) |
| 16 | 15 | 3impia | |- ( ( J e. Comp /\ X C_ ( Clsd ` J ) /\ -. (/) e. ( fi ` X ) ) -> |^| X =/= (/) ) |