This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The forward difference of a falling factorial. (Contributed by Scott Fenton, 21-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fallfacfwd | |- ( ( A e. CC /\ N e. NN ) -> ( ( ( A + 1 ) FallFac N ) - ( A FallFac N ) ) = ( N x. ( A FallFac ( N - 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2cn | |- ( A e. CC -> ( A + 1 ) e. CC ) |
|
| 2 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 3 | fallfacval | |- ( ( ( A + 1 ) e. CC /\ N e. NN0 ) -> ( ( A + 1 ) FallFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( ( A + 1 ) - k ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( A e. CC /\ N e. NN ) -> ( ( A + 1 ) FallFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( ( A + 1 ) - k ) ) |
| 5 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 6 | 5 | oveq1i | |- ( ( 0 + 1 ) ... ( N - 1 ) ) = ( 1 ... ( N - 1 ) ) |
| 7 | 6 | prodeq1i | |- prod_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( A - ( k - 1 ) ) = prod_ k e. ( 1 ... ( N - 1 ) ) ( A - ( k - 1 ) ) |
| 8 | 7 | oveq2i | |- ( ( A - -u 1 ) x. prod_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( A - ( k - 1 ) ) ) = ( ( A - -u 1 ) x. prod_ k e. ( 1 ... ( N - 1 ) ) ( A - ( k - 1 ) ) ) |
| 9 | nnm1nn0 | |- ( N e. NN -> ( N - 1 ) e. NN0 ) |
|
| 10 | 9 | adantl | |- ( ( A e. CC /\ N e. NN ) -> ( N - 1 ) e. NN0 ) |
| 11 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 12 | 10 11 | eleqtrdi | |- ( ( A e. CC /\ N e. NN ) -> ( N - 1 ) e. ( ZZ>= ` 0 ) ) |
| 13 | simpll | |- ( ( ( A e. CC /\ N e. NN ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> A e. CC ) |
|
| 14 | elfzelz | |- ( k e. ( 0 ... ( N - 1 ) ) -> k e. ZZ ) |
|
| 15 | 14 | adantl | |- ( ( ( A e. CC /\ N e. NN ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> k e. ZZ ) |
| 16 | peano2zm | |- ( k e. ZZ -> ( k - 1 ) e. ZZ ) |
|
| 17 | 15 16 | syl | |- ( ( ( A e. CC /\ N e. NN ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( k - 1 ) e. ZZ ) |
| 18 | 17 | zcnd | |- ( ( ( A e. CC /\ N e. NN ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( k - 1 ) e. CC ) |
| 19 | 13 18 | subcld | |- ( ( ( A e. CC /\ N e. NN ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( A - ( k - 1 ) ) e. CC ) |
| 20 | oveq1 | |- ( k = 0 -> ( k - 1 ) = ( 0 - 1 ) ) |
|
| 21 | df-neg | |- -u 1 = ( 0 - 1 ) |
|
| 22 | 20 21 | eqtr4di | |- ( k = 0 -> ( k - 1 ) = -u 1 ) |
| 23 | 22 | oveq2d | |- ( k = 0 -> ( A - ( k - 1 ) ) = ( A - -u 1 ) ) |
| 24 | 12 19 23 | fprod1p | |- ( ( A e. CC /\ N e. NN ) -> prod_ k e. ( 0 ... ( N - 1 ) ) ( A - ( k - 1 ) ) = ( ( A - -u 1 ) x. prod_ k e. ( ( 0 + 1 ) ... ( N - 1 ) ) ( A - ( k - 1 ) ) ) ) |
| 25 | fallfacval2 | |- ( ( A e. CC /\ ( N - 1 ) e. NN0 ) -> ( A FallFac ( N - 1 ) ) = prod_ k e. ( 1 ... ( N - 1 ) ) ( A - ( k - 1 ) ) ) |
|
| 26 | 9 25 | sylan2 | |- ( ( A e. CC /\ N e. NN ) -> ( A FallFac ( N - 1 ) ) = prod_ k e. ( 1 ... ( N - 1 ) ) ( A - ( k - 1 ) ) ) |
| 27 | 26 | oveq2d | |- ( ( A e. CC /\ N e. NN ) -> ( ( A - -u 1 ) x. ( A FallFac ( N - 1 ) ) ) = ( ( A - -u 1 ) x. prod_ k e. ( 1 ... ( N - 1 ) ) ( A - ( k - 1 ) ) ) ) |
| 28 | 8 24 27 | 3eqtr4a | |- ( ( A e. CC /\ N e. NN ) -> prod_ k e. ( 0 ... ( N - 1 ) ) ( A - ( k - 1 ) ) = ( ( A - -u 1 ) x. ( A FallFac ( N - 1 ) ) ) ) |
| 29 | elfznn0 | |- ( k e. ( 0 ... ( N - 1 ) ) -> k e. NN0 ) |
|
| 30 | 29 | adantl | |- ( ( ( A e. CC /\ N e. NN ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> k e. NN0 ) |
| 31 | 30 | nn0cnd | |- ( ( ( A e. CC /\ N e. NN ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> k e. CC ) |
| 32 | 1cnd | |- ( ( ( A e. CC /\ N e. NN ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> 1 e. CC ) |
|
| 33 | 13 31 32 | subsub3d | |- ( ( ( A e. CC /\ N e. NN ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( A - ( k - 1 ) ) = ( ( A + 1 ) - k ) ) |
| 34 | 33 | prodeq2dv | |- ( ( A e. CC /\ N e. NN ) -> prod_ k e. ( 0 ... ( N - 1 ) ) ( A - ( k - 1 ) ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( ( A + 1 ) - k ) ) |
| 35 | simpl | |- ( ( A e. CC /\ N e. NN ) -> A e. CC ) |
|
| 36 | 1cnd | |- ( ( A e. CC /\ N e. NN ) -> 1 e. CC ) |
|
| 37 | 35 36 | subnegd | |- ( ( A e. CC /\ N e. NN ) -> ( A - -u 1 ) = ( A + 1 ) ) |
| 38 | 37 | oveq1d | |- ( ( A e. CC /\ N e. NN ) -> ( ( A - -u 1 ) x. ( A FallFac ( N - 1 ) ) ) = ( ( A + 1 ) x. ( A FallFac ( N - 1 ) ) ) ) |
| 39 | 28 34 38 | 3eqtr3d | |- ( ( A e. CC /\ N e. NN ) -> prod_ k e. ( 0 ... ( N - 1 ) ) ( ( A + 1 ) - k ) = ( ( A + 1 ) x. ( A FallFac ( N - 1 ) ) ) ) |
| 40 | 4 39 | eqtrd | |- ( ( A e. CC /\ N e. NN ) -> ( ( A + 1 ) FallFac N ) = ( ( A + 1 ) x. ( A FallFac ( N - 1 ) ) ) ) |
| 41 | simpr | |- ( ( A e. CC /\ N e. NN ) -> N e. NN ) |
|
| 42 | 41 | nncnd | |- ( ( A e. CC /\ N e. NN ) -> N e. CC ) |
| 43 | 42 36 | npcand | |- ( ( A e. CC /\ N e. NN ) -> ( ( N - 1 ) + 1 ) = N ) |
| 44 | 43 | oveq2d | |- ( ( A e. CC /\ N e. NN ) -> ( A FallFac ( ( N - 1 ) + 1 ) ) = ( A FallFac N ) ) |
| 45 | fallfacp1 | |- ( ( A e. CC /\ ( N - 1 ) e. NN0 ) -> ( A FallFac ( ( N - 1 ) + 1 ) ) = ( ( A FallFac ( N - 1 ) ) x. ( A - ( N - 1 ) ) ) ) |
|
| 46 | 9 45 | sylan2 | |- ( ( A e. CC /\ N e. NN ) -> ( A FallFac ( ( N - 1 ) + 1 ) ) = ( ( A FallFac ( N - 1 ) ) x. ( A - ( N - 1 ) ) ) ) |
| 47 | 44 46 | eqtr3d | |- ( ( A e. CC /\ N e. NN ) -> ( A FallFac N ) = ( ( A FallFac ( N - 1 ) ) x. ( A - ( N - 1 ) ) ) ) |
| 48 | 40 47 | oveq12d | |- ( ( A e. CC /\ N e. NN ) -> ( ( ( A + 1 ) FallFac N ) - ( A FallFac N ) ) = ( ( ( A + 1 ) x. ( A FallFac ( N - 1 ) ) ) - ( ( A FallFac ( N - 1 ) ) x. ( A - ( N - 1 ) ) ) ) ) |
| 49 | fallfaccl | |- ( ( A e. CC /\ ( N - 1 ) e. NN0 ) -> ( A FallFac ( N - 1 ) ) e. CC ) |
|
| 50 | 9 49 | sylan2 | |- ( ( A e. CC /\ N e. NN ) -> ( A FallFac ( N - 1 ) ) e. CC ) |
| 51 | 10 | nn0cnd | |- ( ( A e. CC /\ N e. NN ) -> ( N - 1 ) e. CC ) |
| 52 | 35 51 | subcld | |- ( ( A e. CC /\ N e. NN ) -> ( A - ( N - 1 ) ) e. CC ) |
| 53 | 50 52 | mulcomd | |- ( ( A e. CC /\ N e. NN ) -> ( ( A FallFac ( N - 1 ) ) x. ( A - ( N - 1 ) ) ) = ( ( A - ( N - 1 ) ) x. ( A FallFac ( N - 1 ) ) ) ) |
| 54 | 53 | oveq2d | |- ( ( A e. CC /\ N e. NN ) -> ( ( ( A + 1 ) x. ( A FallFac ( N - 1 ) ) ) - ( ( A FallFac ( N - 1 ) ) x. ( A - ( N - 1 ) ) ) ) = ( ( ( A + 1 ) x. ( A FallFac ( N - 1 ) ) ) - ( ( A - ( N - 1 ) ) x. ( A FallFac ( N - 1 ) ) ) ) ) |
| 55 | 1 | adantr | |- ( ( A e. CC /\ N e. NN ) -> ( A + 1 ) e. CC ) |
| 56 | 55 52 50 | subdird | |- ( ( A e. CC /\ N e. NN ) -> ( ( ( A + 1 ) - ( A - ( N - 1 ) ) ) x. ( A FallFac ( N - 1 ) ) ) = ( ( ( A + 1 ) x. ( A FallFac ( N - 1 ) ) ) - ( ( A - ( N - 1 ) ) x. ( A FallFac ( N - 1 ) ) ) ) ) |
| 57 | 35 36 51 | pnncand | |- ( ( A e. CC /\ N e. NN ) -> ( ( A + 1 ) - ( A - ( N - 1 ) ) ) = ( 1 + ( N - 1 ) ) ) |
| 58 | 36 42 | pncan3d | |- ( ( A e. CC /\ N e. NN ) -> ( 1 + ( N - 1 ) ) = N ) |
| 59 | 57 58 | eqtrd | |- ( ( A e. CC /\ N e. NN ) -> ( ( A + 1 ) - ( A - ( N - 1 ) ) ) = N ) |
| 60 | 59 | oveq1d | |- ( ( A e. CC /\ N e. NN ) -> ( ( ( A + 1 ) - ( A - ( N - 1 ) ) ) x. ( A FallFac ( N - 1 ) ) ) = ( N x. ( A FallFac ( N - 1 ) ) ) ) |
| 61 | 54 56 60 | 3eqtr2d | |- ( ( A e. CC /\ N e. NN ) -> ( ( ( A + 1 ) x. ( A FallFac ( N - 1 ) ) ) - ( ( A FallFac ( N - 1 ) ) x. ( A - ( N - 1 ) ) ) ) = ( N x. ( A FallFac ( N - 1 ) ) ) ) |
| 62 | 48 61 | eqtrd | |- ( ( A e. CC /\ N e. NN ) -> ( ( ( A + 1 ) FallFac N ) - ( A FallFac N ) ) = ( N x. ( A FallFac ( N - 1 ) ) ) ) |