This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate out the first term in a finite product. (Contributed by Scott Fenton, 24-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprod1p.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| fprod1p.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
||
| fprod1p.3 | |- ( k = M -> A = B ) |
||
| Assertion | fprod1p | |- ( ph -> prod_ k e. ( M ... N ) A = ( B x. prod_ k e. ( ( M + 1 ) ... N ) A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprod1p.1 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 2 | fprod1p.2 | |- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
|
| 3 | fprod1p.3 | |- ( k = M -> A = B ) |
|
| 4 | eluzfz1 | |- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
|
| 5 | 1 4 | syl | |- ( ph -> M e. ( M ... N ) ) |
| 6 | 5 | elfzelzd | |- ( ph -> M e. ZZ ) |
| 7 | fzsn | |- ( M e. ZZ -> ( M ... M ) = { M } ) |
|
| 8 | 6 7 | syl | |- ( ph -> ( M ... M ) = { M } ) |
| 9 | 8 | ineq1d | |- ( ph -> ( ( M ... M ) i^i ( ( M + 1 ) ... N ) ) = ( { M } i^i ( ( M + 1 ) ... N ) ) ) |
| 10 | 6 | zred | |- ( ph -> M e. RR ) |
| 11 | 10 | ltp1d | |- ( ph -> M < ( M + 1 ) ) |
| 12 | fzdisj | |- ( M < ( M + 1 ) -> ( ( M ... M ) i^i ( ( M + 1 ) ... N ) ) = (/) ) |
|
| 13 | 11 12 | syl | |- ( ph -> ( ( M ... M ) i^i ( ( M + 1 ) ... N ) ) = (/) ) |
| 14 | 9 13 | eqtr3d | |- ( ph -> ( { M } i^i ( ( M + 1 ) ... N ) ) = (/) ) |
| 15 | fzsplit | |- ( M e. ( M ... N ) -> ( M ... N ) = ( ( M ... M ) u. ( ( M + 1 ) ... N ) ) ) |
|
| 16 | 5 15 | syl | |- ( ph -> ( M ... N ) = ( ( M ... M ) u. ( ( M + 1 ) ... N ) ) ) |
| 17 | 8 | uneq1d | |- ( ph -> ( ( M ... M ) u. ( ( M + 1 ) ... N ) ) = ( { M } u. ( ( M + 1 ) ... N ) ) ) |
| 18 | 16 17 | eqtrd | |- ( ph -> ( M ... N ) = ( { M } u. ( ( M + 1 ) ... N ) ) ) |
| 19 | fzfid | |- ( ph -> ( M ... N ) e. Fin ) |
|
| 20 | 14 18 19 2 | fprodsplit | |- ( ph -> prod_ k e. ( M ... N ) A = ( prod_ k e. { M } A x. prod_ k e. ( ( M + 1 ) ... N ) A ) ) |
| 21 | 3 | eleq1d | |- ( k = M -> ( A e. CC <-> B e. CC ) ) |
| 22 | 2 | ralrimiva | |- ( ph -> A. k e. ( M ... N ) A e. CC ) |
| 23 | 21 22 5 | rspcdva | |- ( ph -> B e. CC ) |
| 24 | 3 | prodsn | |- ( ( M e. ( M ... N ) /\ B e. CC ) -> prod_ k e. { M } A = B ) |
| 25 | 5 23 24 | syl2anc | |- ( ph -> prod_ k e. { M } A = B ) |
| 26 | 25 | oveq1d | |- ( ph -> ( prod_ k e. { M } A x. prod_ k e. ( ( M + 1 ) ... N ) A ) = ( B x. prod_ k e. ( ( M + 1 ) ... N ) A ) ) |
| 27 | 20 26 | eqtrd | |- ( ph -> prod_ k e. ( M ... N ) A = ( B x. prod_ k e. ( ( M + 1 ) ... N ) A ) ) |