This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the falling factorial function. (Contributed by Scott Fenton, 5-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fallfacval | |- ( ( A e. CC /\ N e. NN0 ) -> ( A FallFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( x = A -> ( x - k ) = ( A - k ) ) |
|
| 2 | 1 | prodeq2sdv | |- ( x = A -> prod_ k e. ( 0 ... ( n - 1 ) ) ( x - k ) = prod_ k e. ( 0 ... ( n - 1 ) ) ( A - k ) ) |
| 3 | oveq1 | |- ( n = N -> ( n - 1 ) = ( N - 1 ) ) |
|
| 4 | 3 | oveq2d | |- ( n = N -> ( 0 ... ( n - 1 ) ) = ( 0 ... ( N - 1 ) ) ) |
| 5 | 4 | prodeq1d | |- ( n = N -> prod_ k e. ( 0 ... ( n - 1 ) ) ( A - k ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) ) |
| 6 | df-fallfac | |- FallFac = ( x e. CC , n e. NN0 |-> prod_ k e. ( 0 ... ( n - 1 ) ) ( x - k ) ) |
|
| 7 | prodex | |- prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) e. _V |
|
| 8 | 2 5 6 7 | ovmpo | |- ( ( A e. CC /\ N e. NN0 ) -> ( A FallFac N ) = prod_ k e. ( 0 ... ( N - 1 ) ) ( A - k ) ) |